No Arabic abstract
Let $v$ be an odd real polynomial (i.e. a polynomial of the form $sum_{j=1}^ell a_jx^{2j-1}$). We utilize sets of iterated differences to establish new results about sets of the form $mathcal R(v,epsilon)={ninmathbb{N},|,|v(n)|{<epsilon}}$ where $|cdot|$ denotes the distance to the closest integer. We then apply the new diophantine results to obtain applications to ergodic theory and combinatorics. In particular, we obtain a new characterization of weakly mixing systems as well as a new variant of Furstenberg-Sarkozy theorem.
In this paper we study a family of limsup sets that are defined using iterated function systems. Our main result is an analogue of Khintchines theorem for these sets. We then apply this result to the topic of intrinsic Diophantine Approximation on self-similar sets. In particular, we define a new height function for an element of $mathbb{Q}^d$ contained in a self-similar set in terms of its eventually periodic representations. For limsup sets defined with respect to this height function, we obtain a detailed description of their metric properties. The results of this paper hold in arbitrary dimensions and without any separation conditions on the underlying iterated function system.
Let $(G, +)$ be an abelian group. In 2004, Eliahou and Kervaire found an explicit formula for the smallest possible cardinality of the sumset $A+A$, where $A subseteq G$ has fixed cardinality $r$. We consider instead the smallest possible cardinality of the difference set $A-A$, which is always greater than or equal to the smallest possible cardinality of $A+A$ and can be strictly greater. We conjecture a formula for this quantity and prove the conjecture in the case that $G$ is a cyclic group or a vector space over a finite field. This resolves a conjecture of Bajnok and Matzke on signed sumsets.
In this paper we establish a new connection between central sets and the strong coincidence conjecture for fixed points of irreducible primitive substitutions of Pisot type. Central sets, first introduced by Furstenberg using notions from topological dynamics, constitute a special class of subsets of $ ats$ possessing strong combinatorial properties: Each central set contains arbitrarily long arithmetic progressions, and solutions to all partition regular systems of homogeneous linear equations. We give an equivalent reformulation of the strong coincidence condition in terms of central sets and minimal idempotent ultrafilters in the Stone-v{C}ech compactification $beta ats .$ This provides a new arithmetical approach to an outstanding conjecture in tiling theory, the Pisot substitution conjecture. The results in this paper rely on interactions between different areas of mathematics, some of which had not previously been directly linked: They include the general theory of combinatorics on words, abstract numeration systems, tilings, topological dynamics and the algebraic/topological properties of Stone-v{C}ech compactification of $ ats.$
We explore the properties of non-piecewise syndetic sets with positive upper density, which we call discordant, in countable amenable (semi)groups. Sets of this kind are involved in many questions of Ramsey theory and manifest the difference in complexity between the classical van der Waerdens theorem and Szemeredis theorem. We generalize and unify old constructions and obtain new results about these historically interesting sets. Here is a small sample of our results. $bullet$ We connect discordant sets to recurrence in dynamical systems, and in this setting we exhibit an intimate analogy between discordant sets and nowhere dense sets having positive measure. $bullet$ We introduce a wide-ranging generalization of the squarefree numbers, producing many examples of discordant sets in $mathbb{Z}$, $mathbb{Z}^d$, and the Heisenberg group. We develop a unified method to compute densities of these discordant sets. $bullet$ We show that, for any countable abelian group $G$, any F{o}lner sequence $Phi$ in $G$, and any $c in (0, 1)$, there exists a discordant set $A subseteq G$ with $d_Phi(A) = c$. Here $d_Phi$ denotes density along $Phi$. Along the way, we draw from various corners of mathematics, including classical Ramsey theory, ergodic theory, number theory, and topological and symbolic dynamics.
We report new examples of Sidon sets in abelian groups arising from algebraic geometry.