Do you want to publish a course? Click here

On the Classical Model for Microwave Induced Escape from a Josephson Washboard Potential

168   0   0.0 ( 0 )
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We revisit the interpretation of earlier low temperature experiments on Josephson junctions under the influence of applied microwaves. It was claimed that these experiments unambiguously established a quantum phenomenology with discrete levels in shallow wells of the washboard potential, and macroscopic quantum tunneling. We here apply the previously developed classical theory to a direct comparison with the original experimental observations, and we show that the experimental data can be accurately represented classically. Thus, our analysis questions the necessity of the earlier quantum mechanical interpretation.



rate research

Read More

289 - A. B. Kolton , E. A. Jagla 2020
The thermal rounding of the depinning transition of an elastic interface sliding on a washboard potential is studied through analytic arguments and very accurate numerical simulations. We confirm the standard view that well below the depinning threshold the average velocity can be calculated considering thermally activated nucleation of forward moving defects. However, we find that the straightforward extension of this analysis to near or above the depinning threshold does not fully describe the physics of the thermally assisted motion. In particular, we find that exactly at the depinning point the average velocity does not follow a pure power-law of the temperature as naively expected by the analogy with standard phase transitions but presents subtle logarithmic corrections. We explain the physical mechanisms behind these corrections and argue that they are non-peculiar collective effects which may also apply to the case of interfaces sliding on uncorrelated disordered landscapes.
114 - T. J. Bullard 2005
In order to characterize flux flow through disordered type-II superconductors, we investigate the effects of columnar and point defects on the vortex velocity / voltage power spectrum in the driven non-equilibrium steady state. We employ three-dimensional Metropolis Monte Carlo simulations to measure relevant physical observables including the force-velocity / current-voltage (I-V) characteristics, vortex spatial arrangement and structure factor, and mean flux line radius of gyration. Our simulation results compare well to earlier findings and physical intuition. We focus specifically on the voltage noise power spectra in conjunction with the vortex structure factor in the presence of weak columnar and point pinning centers. We investigate the vortex washboard noise peak and associated higher harmonics, and show that the intensity ratios of the washboard harmonics are determined by the strength of the material defects rather than the type of pins present. Through varying columnar defect lengths and pinning strengths as well as magnetic flux density we further explore the effect of the material defects on vortex transport. It is demonstrated that the radius of gyration displays quantitatively unique features that depend characteristically on the type of material defects present in the sample.
We present a cluster algorithm for resistively shunted Josephson junctions and similar physical systems, which dramatically improves sampling efficiency. The algorithm combines local updates in Fourier space with rejection-free cluster updates which exploit the symmetries of the Josephson coupling energy. As an application, we consider the localization transition of a single junction at intermediate Josephson coupling and determine the temperature dependence of the zero bias resistance as a function of dissipation strength.
105 - I. Siddiqi , R. Vijay , F. Pierre 2005
We have constructed a new type of amplifier whose primary purpose is the readout of superconducting quantum bits. It is based on the transition of an RF-driven Josephson junction between two distinct oscillation states near a dynamical bifurcation point. The main advantages of this new amplifier are speed, high-sensitivity, low back-action, and the absence of on-chip dissipation. Using pulsed microwave techniques, we demonstrate bifurcation amplification in nanofabricated Al junctions and verify that the performance predicted by theory is attained.
We have developed a model for experiments in which the bias current applied to a Josephson junction is slowly increased from zero until the junction switches from its superconducting zero-voltage state, and the bias value at which this occurs is recorded. Repetition of such measurements yields experimentally determined probability distributions for the bias current at the moment of escape. Our model provides an explanation for available data on the temperature dependence of these escape peaks. When applied microwaves are included we observe an additional peak in the escape distributions and demonstrate that this peak matches experimental observations. The results suggest that experimentally observed switching distributions, with and without applied microwaves, can be understood within classical mechanics and may not exhibit phenomena that demand an exclusively quantum mechanical interpretation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا