Do you want to publish a course? Click here

Multidimensional instability and dynamics of spin-avalanches in crystals of nanomagnets

104   0   0.0 ( 0 )
 Added by Mattias Marklund
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We obtain a fundamental instability of the magnetization-switching fronts in super-paramagnetic and ferromagnetic materials such as crystals of nanomagnets, ferromagnetic nanowires, and systems of quantum dots with large spin. We develop the instability theory for both linear and nonlinear stages. By using numerical simulations we investigate the instability properties focusing on spin avalanches in crystals of nanomagnets. The instability distorts spontaneously the fronts and leads to a complex multidimensional front dynamics. We show that the instability has a universal physical nature, with a deep relationship to a wide variety of physical systems, such as the Darrieus-Landau instability of deflagration fronts in combustion, inertial confinement fusion and thermonuclear su- pernovae, and the instability of doping fronts in organic semiconductors.

rate research

Read More

Anisotropy effects for spin avalanches in crystals of nanomagnets are studied theoretically with the external magnetic field applied at an arbitrary angle to the easy axis. Starting with the Hamiltonian for a single nanomagnet in the crystal, the two essential quantities characterizing spin avalanches are calculated: the activation energy and the Zeeman energy. The calculation is performed numerically for the wide range of angles and analytical formulas are derived within the limit of small angles. The anisotropic properties of a single nanomagnet lead to anisotropic behavior of the magnetic deflagration speed. Modifications of the magnetic deflagration speed are investigated for different angles between the external magnetic field and the easy axis of the crystals. Anisotropic properties of magnetic detonation are also studied, which concern, first of all, temperature behind the leading shock and the characteristic time of spin switching in the detonation.
101 - M. P. Sarachik , S. McHugh 2010
The magnetization of the prototypical molecular magnet Mn12-acetate exhibits a series of sharp steps at low temperatures due to quantum tunneling at specific resonant values of magnetic field applied along the easy c-axis. An abrupt reversal of the magnetic moment of such a crystal can also occur as an avalanche, where the spin reversal proceeds along a deflagration front that travels through the sample at subsonic speed. In this article we review experimental results that have been obtained for the ignition temperature and the speed of propagation of magnetic avalanches in molecular nanomagnets. Fits of the data with the theory of magnetic deflagration yield overall qualitative agreement. However, numerical discrepancies indicate that our understanding of these avalanches is incomplete.
Magnetic insulators, such as yttrium iron garnet (Y$_3$Fe$_5$O$_{12}$), are ideal materials for ultra-low power spintronics applications due to their low energy dissipation and efficient spin current generation and transmission. Recently, it has been realized that spin dynamics can be driven very effectively in micrometer-sized Y$_3$Fe$_5$O$_{12}$/Pt heterostructures by spin-Hall effects. We demonstrate here the excitation and detection of spin dynamics in Y$_3$Fe$_5$O$_{12}$/Pt nanowires by spin-torque ferromagnetic resonance. The nanowires defined via electron-beam lithography are fabricated by conventional room temperature sputtering deposition on Gd$_3$Ga$_5$O$_{12 }$ substrates and lift-off. We observe field-like and anti-damping-like torques acting on the magnetization precession, which are due to simultaneous excitation by Oersted fields and spin-Hall torques. The Y$_3$Fe$_5$O$_{12}$/Pt nanowires are thoroughly examined over a wide frequency and power range. We observe a large change in the resonance field at high microwave powers, which is attributed to a decreasing effective magnetization due to microwave absorption. These heating effects are much more pronounced in the investigated nanostructures than in comparable micron-sized samples. By comparing different nanowire widths, the importance of geometrical confinements for magnetization dynamics becomes evident: quantized spin-wave modes across the width of the wires are observed in the spectra. Our results are the first stepping stones toward the realization of integrated magnonic logic devices based on insulators, where nanomagnets play an essential role.
Avalanche experiments on an erodible substrate are treated in the framework of ``partial fluidization model of dense granular flows. The model identifies a family of propagating soliton-like avalanches with shape and velocity controlled by the inclination angle and the depth of substrate. At high inclination angles the solitons display a transverse instability, followed by coarsening and fingering similar to recent experimental observation. A primary cause for the transverse instability is directly related to the dependence of soliton velocity on the granular mass trapped in the avalanche.
Thermally-activated magnetization dynamics of small nanoparticles subject to microwave (AC) external fields is studied. It is shown that, under sufficiently strong microwave excitations, chaotic magnetization dynamics may occur close to saddle-type heteroclinic connections, and this heteroclinic chaos is responsible for the erosion of the safe basin around stable magnetization states. The erosion phenomenon is then connected to the escape problem from the energy well surrounding a stable equilibrium. It is shown that escape times follow a generalized Arrhenius law governed by temperature, microwave field amplitude, frequency and heteroclinic chaos threshold.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا