Do you want to publish a course? Click here

The third moment of current fluctuations in a tunnel junction: experiments in the classical and quantum regimes

184   0   0.0 ( 0 )
 Added by Bertrand Reulet
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the first experimental data of the third moment of current fluctuations in a tunnel junction. We show that both in the classical and quantum regimes (low or high frequency as compared to voltage), it is given by $S_{I^3}=e^2I$. We discuss environmental effects in both regimes.



rate research

Read More

We investigate the transitions induced by external current fluctuations on a small probe quantum system. The rates for the transitions between the energy states are calculated using the real-time Keldysh formalism for the density matrix evolution. We especially detail the effects of the third cumulant of current fluctuations inductively coupled to a quantum bit and propose a setup for detecting the frequency-dependent third cumulant through the transitions it induces.
The non-symmetrized current noise is crucial for the analysis of light emission in nanojunctions. The latter represent non-classical photon emitters whose description requires a full quantum approach. It was found experimentally that light emission can occur with a photon energy exceeding the applied dc voltage, which intuitively should be forbidden due to the Pauli principle. This overbias light emission cannot be described by the single-electron physics, but can be explained by two-electron or even three-electron processes, correlated by a local resonant mode in analogy to the well-known dynamical Coulomb blockade (DCB). Here, we obtain the non-symmetrized noise for junctions driven by an arbitrarily shaped periodic voltage. We find that when the junction is driven, the overbias light emission exhibits intriguingly different features compared to the dc case. In addition to kinks at multiples of the bias voltage, side kinks appear at integer multiples of the ac driving frequency. Our work generalizes the DCB theory of light emission to driven tunnel junctions and opens the avenue for engineered quantum light sources, which can be tuned purely by applied voltages.
We analyze the dynamics of a nanomechanical oscillator coupled to an electrical tunnel junction with an arbitrary voltage applied to the junction and arbitrary temperature of electrons in leads. We obtain the explicit expressions for the fluctuations of oscillator position, its damping/decoherence rate, and the current through the structure. It is shown that quantum heating of the oscillator results in nonlinearity of the current-voltage characteristics. The effects of mechanical vacuum fluctuations are also discussed.
Intrinsic noise is known to be ubiquitous in Josephson junctions. We investigate a voltage biased superconducting tunnel junction including a very small number of pinholes - transport channels possessing a transmission coefficient close to unity. Although few of these pinholes contribute very little to the conductance, they can dominate current fluctuations in the low-voltage regime. We show that even fully transparent transport channels between superconductors contribute to shot noise due to the uncertainty in the number of Andreev cycles. We discuss shot noise enhancement by Multiple Andreev Reflection in such a junction and investigate whether pinholes might contribute as a microscopic mechanism of two-level current fluctuators. We discuss the connection of these results to the junction resonators observed in Josephson phase qubits.
144 - J. Gabelli , B. Reulet 2007
We report the first measurement of the emph{dynamical response} of shot noise (measured at frequency $omega$) of a tunnel junction to an ac excitation at frequency $omega_0$. The experiment is performed in the quantum regime, $hbaromegasimhbaromega_0gg k_BT$ at very low temperature T=35mK and high frequency $omega_0/2pi=6.2$ GHz. We observe that the noise responds in phase with the excitation, but not adiabatically. The results are in very good agreement with a prediction based on a new current-current correlator.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا