Do you want to publish a course? Click here

Droplet-like Fermi surfaces in the anti-ferromagnetic phase of EuFe$_2$As$_2$, an Fe-pnictide superconductor parent compound

153   0   0.0 ( 0 )
 Added by Sanne Jong de
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

Using angle resolved photoemission it is shown that the low lying electronic states of the iron pnictide parent compound EuFe$_2$As$_2$ are strongly modified in the magnetically ordered, low temperature, orthorhombic state compared to the tetragonal, paramagnetic case above the spin density wave transition temperature. Back-folded bands, reflected in the orthorhombic/ anti-ferromagnetic Brillouin zone boundary hybridize strongly with the non-folded states, leading to the opening of energy gaps. As a direct consequence, the large Fermi surfaces of the tetragonal phase fragment, the low temperature Fermi surface being comprised of small droplets, built up of electron and hole-like sections. These high resolution ARPES data are therefore in keeping with quantum oscillation and optical data from other undoped pnictide parent compounds.



rate research

Read More

Ternary iron arsenide EuFe$_2$As$_2$ with ThCr$_2$Si$_2$-type structure has been studied by magnetic susceptibility, resistivity, thermopower, Hall and specific heat measurements. The compound undergoes two magnetic phase transitions at about 200 K and 20 K, respectively. The former was found to be accompanied with a slight drop in magnetic susceptibility (after subtracting the Curie-Weiss paramagnetic contribution), a rapid decrease in resistivity, a large jump in thermopower and a sharp peak in specific heat with decreasing temperature, all of which point to a spin-density-wave-like antiferromagnetic transition. The latter was proposed to be associated with an A-type antiferromagnetic ordering of Eu$^{2+}$ moments. Comparing with the physical properties of the iso-structural compounds BaFe$_2$As$_2$ and SrFe$_2$As$_2$, we expect that superconductivity could be induced in EuFe$_2$As$_2$ through appropriate doping.
We report the ac magnetic susceptibility $chi_{ac}$ and resistivity $rho$ measurements of EuFe$_2$As$_2$ under high pressure $P$. By observing nearly 100% superconducting shielding and zero resistivity at $P$ = 28 kbar, we establish that $P$-induced superconductivity occurs at $T_c sim$~30 K in EuFe$_2$As$_2$. $rho$ shows an anomalous nearly linear temperature dependence from room temperature down to $T_c$ at the same $P$. $chi_{ac}$ indicates that an antiferromagnetic order of Eu$^{2+}$ moments with $T_N sim$~20 K persists in the superconducting phase. The temperature dependence of the upper critical field is also determined.
We present the magnetic and superconducting phase diagram of EuFe$_2$As$_2$ for $B parallel c$ and $B parallel ab$. The antiferromagnetic phase of the Eu$^{2+}$ moments is completely enclosed in the superconducting phase. The upper critical field vs. temperature curves exhibit strong concave curvatures, which can be explained by the Jaccarino-Peter compensation effect due to the antiferromagnetic exchange interaction between the Eu$^{2+}$ moments and conduction electrons.
254 - S. Kong , D. Y. Liu , S. T. Cui 2014
The multiband nature of iron-pnictide superconductors is one of the keys to the understanding of their intriguing behavior. The electronic and magnetic properties heavily rely on the multiband interactions between different electron and hole pockets near the Fermi level. At the fundamental level, though many theoretical models were constructed on the basis of the so-called 1-Fe Brillouin zone (BZ) with an emphasis of the basic square lattice of iron atoms, most electronic structure measurements were interpreted in the 2-Fe BZ. Whether the 1-Fe BZ is valid in a real system is still an open question. Using angle-resolved photoemission spectroscopy (ARPES), here we show in an extremely hole-doped iron-pnictide superconductor CsFe$_2$As$_2$ that the distribution of electronic spectral weight follows the 1-Fe BZ, and that the emerging band structure bears some features qualitatively different from theoretical band structures of the 1-Fe BZ. Our analysis suggests that the interlayer separation is an important tuning factor for the physics of FeAs layers, the increase of which can reduce the coupling between Fe and As and lead to the emergence of the electronic structure in accord with the 1-Fe symmetry of the Fe square lattice. Our finding puts strong constraints on the theoretical models constructed on the basis of the 1-Fe BZ.
We have carried out high-field resistivity measurements up to 27,T in EuFe$_2$As$_2$ at $P$,=,2.5,GPa, a virtually optimal pressure for the $P$-induced superconductivity, where $T_mathrm{c}$,=,30,K. The $B_mathrm{c2}-T_mathrm{c}$ phase diagram has been constructed in a wide temperature range with a minimum temperature of 1.6 K ($approx 0.05 times T_mathrm{c}$), for both $B parallel ab$ ($B_mathrm{c2}^mathrm{ab}$) and $B parallel c$ ($B_mathrm{c2}^mathrm{c}$). The upper critical fields $B_mathrm{c2}^mathrm{ab}$(0) and $B_mathrm{c2}^mathrm{c}$(0), determined by the onset of resistive transitions, are 25 T and 22 T, respectively, which are significantly smaller than those of other Fe-based superconductors with similar values of $T_mathrm{c}$. The small $B_mathrm{c2}(0)$ values and the $B_mathrm{c2}(T)$ curves with positive curvature around 20 K can be explained by a multiple pair-breaking model that includes the exchange field due to the magnetic Eu$^{2+}$ moments. The anisotropy parameter, $Gamma=B_mathrm{c2}^{ab}/B_mathrm{c2}^{c}$, in EuFe$_2$As$_2$ at low temperatures is comparable to that of other 122 Fe-based systems.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا