Do you want to publish a course? Click here

Antiferromagnetic transition in EuFe$_2$As$_2$: A possible parent compound for superconductors

260   0   0.0 ( 0 )
 Added by Guanghan Cao
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

Ternary iron arsenide EuFe$_2$As$_2$ with ThCr$_2$Si$_2$-type structure has been studied by magnetic susceptibility, resistivity, thermopower, Hall and specific heat measurements. The compound undergoes two magnetic phase transitions at about 200 K and 20 K, respectively. The former was found to be accompanied with a slight drop in magnetic susceptibility (after subtracting the Curie-Weiss paramagnetic contribution), a rapid decrease in resistivity, a large jump in thermopower and a sharp peak in specific heat with decreasing temperature, all of which point to a spin-density-wave-like antiferromagnetic transition. The latter was proposed to be associated with an A-type antiferromagnetic ordering of Eu$^{2+}$ moments. Comparing with the physical properties of the iso-structural compounds BaFe$_2$As$_2$ and SrFe$_2$As$_2$, we expect that superconductivity could be induced in EuFe$_2$As$_2$ through appropriate doping.



rate research

Read More

We report the measurements of anisotropic magnetization and magnetoresistance on single crystals of EuFe$_2$As$_2$, a parent compound of ferro-arsenide high-temperature superconductor. Apart from the antiferromagnetic (AFM) spin-density-wave transition at 186 K associated with Fe moments, the compound undergoes another magnetic phase transition at 19 K due to AFM ordering of Eu$^{2+}$ spins ($J=S=7/2$). The latter AFM state exhibits metamagnetic transition under magnetic fields. Upon applying magnetic field with $Hparallel c$ at 2 K, the magnetization increases linearly to 7.0 $mu_{B}$/f.u. at $mu_{0}H$=1.7 T, then keeps at this value of saturated Eu$^{2+}$ moments under higher fields. In the case of $Hparallel ab$, the magnetization increases step-like to 6.6 $mu_{B}$/f.u. with small magnetic hysteresis. A metamagnetic phase was identified with the saturated moments of 4.4 $mu_{B}$/f.u. The metamagnetic transition accompanies with negative in-plane magnetoresistance, reflecting the influence of Eu$^{2+}$ moments ordering on the electrical conduction of FeAs layers. The results were explained in terms of spin-reorientation and spin-reversal based on an $A$-type AFM structure for Eu$^{2+}$ spins. The magnetic phase diagram has been established.
We present the magnetic and superconducting phase diagram of EuFe$_2$As$_2$ for $B parallel c$ and $B parallel ab$. The antiferromagnetic phase of the Eu$^{2+}$ moments is completely enclosed in the superconducting phase. The upper critical field vs. temperature curves exhibit strong concave curvatures, which can be explained by the Jaccarino-Peter compensation effect due to the antiferromagnetic exchange interaction between the Eu$^{2+}$ moments and conduction electrons.
129 - Xiyu Zhu , Fei Han , Gang Mu 2008
A new compound with the FeAs-layers, namely (Sr_3Sc_2O_5)Fe_2As_2 (abbreviated as FeAs-32522), was successfully fabricated. It has a layered structure with the space group of I4/mmm, and with the lattice constants a = 4.069 $AA$ and c = 26.876 $AA$. The in-plane Fe ions construct a square lattice which is close to that of other FeAs-based superconductors, such as REFeAsO (RE = rare earth elements) and (Ba,Sr)Fe_2As_2. However the inter FeAs-layer spacing in the new compound is greatly enlarged. The temperature dependence of resistivity exhibits a weak upturn in the low temperature region, but a metallic behavior was observed above about 60 K. The magnetic susceptibility shows also a non-monotonic behavior. Interestingly, the well-known resistivity anomaly which was discovered in all other parent compounds, such as REFeAsO, (Ba,Sr)Fe_2As_2 and (Sr,Ca,Eu)FeAsF and associated with the Spin-Density-Wave (SDW)/structural transition has not been found in the new system either on the resistivity data or the magnetization data. This could be induced by the large spacing distance between the FeAs-planes, therefore the antiferromagnetic correlation between the moments of Fe ions in neighboring FeAs-layers cannot be established. Alternatively it can also be attributed to the self-doping effect between Fe and Sc ions. The Hall coefficient R_H is negative but strongly temperature dependent in wide temperature region, which indicates the dominance of electrical conduction by electron-like charge carriers and probably a multi-band effect or a spin related scattering effect. It is found that the magnetoresistance cannot be described by the Kohlers rule, which gives further support to above arguments.
We have carried out high-field resistivity measurements up to 27,T in EuFe$_2$As$_2$ at $P$,=,2.5,GPa, a virtually optimal pressure for the $P$-induced superconductivity, where $T_mathrm{c}$,=,30,K. The $B_mathrm{c2}-T_mathrm{c}$ phase diagram has been constructed in a wide temperature range with a minimum temperature of 1.6 K ($approx 0.05 times T_mathrm{c}$), for both $B parallel ab$ ($B_mathrm{c2}^mathrm{ab}$) and $B parallel c$ ($B_mathrm{c2}^mathrm{c}$). The upper critical fields $B_mathrm{c2}^mathrm{ab}$(0) and $B_mathrm{c2}^mathrm{c}$(0), determined by the onset of resistive transitions, are 25 T and 22 T, respectively, which are significantly smaller than those of other Fe-based superconductors with similar values of $T_mathrm{c}$. The small $B_mathrm{c2}(0)$ values and the $B_mathrm{c2}(T)$ curves with positive curvature around 20 K can be explained by a multiple pair-breaking model that includes the exchange field due to the magnetic Eu$^{2+}$ moments. The anisotropy parameter, $Gamma=B_mathrm{c2}^{ab}/B_mathrm{c2}^{c}$, in EuFe$_2$As$_2$ at low temperatures is comparable to that of other 122 Fe-based systems.
Using angle resolved photoemission it is shown that the low lying electronic states of the iron pnictide parent compound EuFe$_2$As$_2$ are strongly modified in the magnetically ordered, low temperature, orthorhombic state compared to the tetragonal, paramagnetic case above the spin density wave transition temperature. Back-folded bands, reflected in the orthorhombic/ anti-ferromagnetic Brillouin zone boundary hybridize strongly with the non-folded states, leading to the opening of energy gaps. As a direct consequence, the large Fermi surfaces of the tetragonal phase fragment, the low temperature Fermi surface being comprised of small droplets, built up of electron and hole-like sections. These high resolution ARPES data are therefore in keeping with quantum oscillation and optical data from other undoped pnictide parent compounds.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا