Do you want to publish a course? Click here

The XMM-Newton Slew Survey: Towards The Whole X-ray Sky and the Rarest X-ray Events

308   0   0.0 ( 0 )
 Added by Dr. Andy Read
 Publication date 2009
  fields Physics
and research's language is English
 Authors A.M. Read




Ask ChatGPT about the research

The data collected by XMM-Newton as it slews between pointings currently cover almost half the entire sky, and many familiar features and new sources are visible. The soft-band sensitivity limit of the Slew is close to that of the RASS, and a large-area Slew-RASS comparison now provides the best opportunity for discovering extremely rare high-variability objects.



rate research

Read More

233 - R.L.C. Starling 2010
We present deep Swift follow-up observations of a sample of 94 unidentified X-ray sources from the XMM-Newton Slew Survey. The X-ray Telescope on-board Swift detected 29% of the sample sources; the flux limits for undetected sources suggests the bulk of the Slew Survey sources are drawn from one or more transient populations. We report revised X-ray positions for the XRT-detected sources, with typical uncertainties of 2.9, reducing the number of catalogued optical matches to just a single source in most cases. We characterise the sources detected by Swift through their X-ray spectra and variability and via UVOT photometry and catalogued nIR, optical and radio observations. Six sources can be associated with known objects and 8 may be associated with unidentified ROSAT sources within the 3-sigma error radii of our revised X-ray positions. We find 10 of the 30 XRT-detected sources are clearly stellar in nature, including one periodic variable star and 2 high proper motion stars. For 11 sources we propose an AGN classification, among which 4 are detected with BAT and 3 have redshifts spanning z = 0.2 - 0.9 obtained from the literature or from optical spectroscopy presented here. The 67 Slew Survey sources we do not detect with Swift are studied via their characteristics in the Slew Survey and by comparison with the XRT and BAT detected population. We suggest that these are mostly if not all extragalactic, though unlikely to be highly absorbed sources in the X-rays such as Compton thick AGN. A large number of these are highly variable soft X-ray sources. A small fraction of mainly hard-band detections may be spurious. This follow-up programme brings us a step further to completing the identifications of a substantial sample of XMM-Newton Slew Survey sources, important for understanding the nature of the transient sky and allowing flux-limited samples to be constructed.
We report the results of an optical campaign carried out by the XMM-Newton Survey Science Centre with the specific goal of identifying the brightest X-ray sources in the XMM-Newton Galactic Plane Survey of Hands et al. (2004). In addition to photometric and spectroscopic observations obtained at the ESO-VLT and ESO-3.6m, we used cross-correlations with the 2XMMi, USNO-B1.0, 2MASS and GLIMPSE catalogues to progress the identification process. Active coronae account for 16 of the 30 identified X-ray sources. Many of the identified hard X-ray sources are associated with massive stars emitting at intermediate X-ray luminosities of 10^32-34 erg/s. Among these are a very absorbed likely hyper-luminous star with X-ray/optical spectra and luminosities comparable with those of eta Carina, a new X-ray selected WN8 Wolf-Rayet star, a new Be/X-ray star belonging to the growing class of Gamma-Cas analogs and a possible supergiant X-ray binary of the kind discovered recently by INTEGRAL. One of the sources, XGPS-25 has a counterpart which exhibits HeII 4686 and Bowen CIII-NIII emission lines suggesting a quiescent or X-ray shielded Low Mass X-ray Binary, although its properties might also be consistent with a rare kind of cataclysmic variable (CV). We also report the discovery of three new CVs, one of which is a likely magnetic system. The soft (0.4-2.0 keV) band LogN-LogS curve is completely dominated by active stars in the flux range of 1x10^-13 to 1x10^-14 erg/cm2/s. In total, we are able to identify a large fraction of the hard (2-10 keV) X-ray sources in the flux range of 1x10^-12 to 1x10^-13 erg/cm2/s with Galactic objects at a rate consistent with that expected for the Galactic contribution only. (abridged)
125 - M. P. Esquej 2005
The XMM-Newton satellite is the most sensitive X-ray observatory flown to date due to the great collecting area of its mirrors coupled with the high quantum efficiency of the EPIC detectors. It performs slewing manoeuvers between observation targets tracking almost circular orbits through the ecliptic poles due to the Sun constraint. Slews are made with the EPIC cameras open and the other instruments closed, operating with the observing mode set to the one of the previous pointed observation and the medium filter in place. Slew observations from the EPIC-pn camera in FF, eFF and LW modes provide data, resulting in a maximum of 15 seconds of on-source time. These data can be used to give a uniform survey of the X-ray sky, at great sensitivity in the hard band compared with other X-ray all-sky surveys.
68 - A. M. Read 2005
XMM-Newton, with the huge collecting area of its mirrors and the high quantum efficiency of its EPIC detectors, is the most sensitive X-ray observatory ever flown. This is strikingly evident during slew exposures, which, while yielding only at most 14 seconds of on-source exposure time, actually constitute a 2-10 keV survey ten times deeper than all other all-sky surveys. The current (April 2005) XMM archive contains 374 slew exposures which give a uniform coverage over around 10,000 square degrees (approx. 25% of the sky). Here we describe the results of pilot studies, the current status of the XMM-Newton Slew Survey, up-to-date results and our progress towards constructing a catalogue of slew detections in the full 0.2-12 keV energy band.
The XMM-RM project was designed to provide X-ray coverage of the Sloan Digital Sky Survey Reverberation Mapping (SDSS-RM) field. 41 XMM-Newton exposures, placed surrounding the Chandra AEGIS field, were taken, covering an area of 6.13 deg^2 and reaching a nominal exposure depth of ~15 ks. We present an X-ray catalog of 3553 sources detected in these data, using a PSF-fitting algorithm and a sample selection threshold that produces a ~5% fraction of spurious sources. In addition to the PSF-fitting likelihood, we calculate a second source reliability measure based on Poisson theory using source and background counts within an aperture. Using the Poissonian likelihood, we select a sub-sample with a high purity and find that it has similar number count profiles to previous X-ray surveys. The Bayesian method NWAY was employed to identify counterparts of the X-ray sources from the optical Legacy and the IR unWISE catalogs, using a 2-dimensional unWISE magnitude-color prior created from optical/IR counterparts of Chandra X-ray sources. A significant number of the optical/IR counterparts correspond to sources with low detection likelihoods, proving the value of retaining the low-likelihood detections in the catalog. 932 of the XMM-RM sources are covered by SDSS spectroscopic observations. 89% of them are classified as AGN, and 71% of these AGN are in the SDSS-RM quasar catalog. Among the SDSS-RM quasars, 80% are detectable at the depth of the XMM observations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا