Do you want to publish a course? Click here

The Sloan Digital Sky Survey Reverberation Mapping Project: the XMM-Newton X-ray source catalog and multi-band counterparts

83   0   0.0 ( 0 )
 Added by Teng Liu
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The XMM-RM project was designed to provide X-ray coverage of the Sloan Digital Sky Survey Reverberation Mapping (SDSS-RM) field. 41 XMM-Newton exposures, placed surrounding the Chandra AEGIS field, were taken, covering an area of 6.13 deg^2 and reaching a nominal exposure depth of ~15 ks. We present an X-ray catalog of 3553 sources detected in these data, using a PSF-fitting algorithm and a sample selection threshold that produces a ~5% fraction of spurious sources. In addition to the PSF-fitting likelihood, we calculate a second source reliability measure based on Poisson theory using source and background counts within an aperture. Using the Poissonian likelihood, we select a sub-sample with a high purity and find that it has similar number count profiles to previous X-ray surveys. The Bayesian method NWAY was employed to identify counterparts of the X-ray sources from the optical Legacy and the IR unWISE catalogs, using a 2-dimensional unWISE magnitude-color prior created from optical/IR counterparts of Chandra X-ray sources. A significant number of the optical/IR counterparts correspond to sources with low detection likelihoods, proving the value of retaining the low-likelihood detections in the catalog. 932 of the XMM-RM sources are covered by SDSS spectroscopic observations. 89% of them are classified as AGN, and 71% of these AGN are in the SDSS-RM quasar catalog. Among the SDSS-RM quasars, 80% are detectable at the depth of the XMM observations.



rate research

Read More

The Sloan Digital Sky Survey Reverberation Mapping project (SDSS-RM) is a dedicated multi-object RM experiment that has spectroscopically monitored a sample of 849 broad-line quasars in a single 7 deg$^2$ field with the SDSS-III BOSS spectrograph. The RM quasar sample is flux-limited to i_psf=21.7 mag, and covers a redshift range of 0.1<z<4.5. Optical spectroscopy was performed during 2014 Jan-Jul dark/grey time, with an average cadence of ~4 days, totaling more than 30 epochs. Supporting photometric monitoring in the g and i bands was conducted at multiple facilities including the CFHT and the Steward Observatory Bok telescopes in 2014, with a cadence of ~2 days and covering all lunar phases. The RM field (RA, DEC=14:14:49.00, +53:05:00.0) lies within the CFHT-LS W3 field, and coincides with the Pan-STARRS 1 (PS1) Medium Deep Field MD07, with three prior years of multi-band PS1 light curves. The SDSS-RM 6-month baseline program aims to detect time lags between the quasar continuum and broad line region (BLR) variability on timescales of up to several months (in the observed frame) for ~10% of the sample, and to anchor the time baseline for continued monitoring in the future to detect lags on longer timescales and at higher redshift. SDSS-RM is the first major program to systematically explore the potential of RM for broad-line quasars at z>0.3, and will investigate the prospects of RM with all major broad lines covered in optical spectroscopy. SDSS-RM will provide guidance on future multi-object RM campaigns on larger scales, and is aiming to deliver more than tens of BLR lag detections for a homogeneous sample of quasars. We describe the motivation, design and implementation of this program, and outline the science impact expected from the resulting data for RM and general quasar science.
We present a detailed characterization of the 849 broad-line quasars from the Sloan Digital Sky Survey Reverberation Mapping (SDSS-RM) project. Our quasar sample covers a redshift range of 0.1<z<4.5 and is flux-limited to i_PSF<21.7 without any other cuts on quasar properties. The main sample characterization includes: 1) spectral measurements of the continuum and broad emission lines for individual objects from the coadded first-season spectroscopy in 2014; 2) identification of broad and narrow absorption lines in the spectra; 3) optical variability properties for continuum and broad lines from multi-epoch spectroscopy. We provide improved systemic redshift estimates for all quasars, and demonstrate the effects of signal-to-noise ratio on the spectral measurements. We compile measured properties for all 849 quasars along with supplemental multi-wavelength data for subsets of our sample from other surveys. The SDSS-RM sample probes a diverse range in quasar properties, and shows well detected continuum and broad-line variability for many objects from first-season monitoring data. The compiled properties serve as the benchmark for follow-up work based on SDSS-RM data. The spectral fitting tools are made public along with this work.
We present composite broad-line region (BLR) reverberation-mapping lag measurements for halpha, hbeta, HeII,$lambda4686$ and MgII for a sample of 144, $zlesssim 1$ quasars from the Sloan Digital Sky Survey Reverberation Mapping (SDSS-RM) project. Using only the 32-epoch spectroscopic light curves in the first 6-month season of SDSS-RM observations, we compile correlation-function measurements for individual objects and then coadd them to allow the measurement of the average lags for our sample at mean redshifts of $0.4$ (for halpha) and $sim 0.65$ (for the other lines). At similar quasar luminosities and redshifts, the sample-averaged lag decreases in the order of MgII, halpha, hbeta and HeII. This decrease in lags is accompanied by an increase in the mean line width of the four lines, and is roughly consistent with the virialized motion for BLR gas in photoionization equilibrium. These are among the first RM measurements of stratified BLR structure at $z>0.3$. Dividing our sample by luminosity, halpha shows clear evidence of increasing lags with luminosity, consistent with the expectation from the measured BLR size-luminosity relation based on hbeta. The other three lines do not show a clear luminosity trend in their average lags due to the limited dynamic range of luminosity probed and the poor average correlation signals in the divided samples, a situation that will be improved with the incorporation of additional photometric and spectroscopic data from SDSS-RM. We discuss the utility and caveats of composite-lag measurements for large statistical quasar samples with reverberation-mapping data.
The Sloan Digital Sky Survey Reverberation Mapping (SDSS-RM) program monitors 849 active galactic nuclei (AGN) both spectroscopically and photometrically. The photometric observations used in this work span over four years and provide an excellent baseline for variability studies of these objects. We present the photometric light curves from 2014 to 2017 obtained by the Steward Observatorys Bok telescope and the CFHT telescope with MegaCam. We provide details on the data acquisition and processing of the data from each telescope, the difference imaging photometry used to produce the light curves, and the calculation of a variability index to quantify each AGNs variability. We find that the Welch-Stetson J-index provides a useful characterization of AGN variability and can be used to select AGNs for further study.
Results from a few decades of reverberation mapping (RM) studies have revealed a correlation between the radius of the broad-line emitting region (BLR) and the continuum luminosity of active galactic nuclei. This radius-luminosity relation enables survey-scale black-hole mass estimates across cosmic time, using relatively inexpensive single-epoch spectroscopy, rather than intensive RM time monitoring. However, recent results from newer reverberation mapping campaigns challenge this widely used paradigm, reporting quasar BLR sizes that differ significantly from the previously established radius-luminosity relation. Using simulations of the radius--luminosity relation with the observational parameters of SDSS-RM, we find that this difference is not likely due to observational biases. Instead, it appears that previous RM samples were biased to a subset of quasar properties, and the broader parameter space occupied by the SDSS-RM quasar sample has a genuinely wider range of BLR sizes. We examine the correlation between the deviations from the radius-luminosity relation and several quasar parameters; the most significant correlations indicate that the deviations depend on UV/optical SED and the relative amount of ionizing radiation. Our results indicate that single-epoch black-hole mass estimates that do not account for the diversity of quasars in the radius-luminosity relation could be overestimated by an average of ~0.3 dex.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا