No Arabic abstract
We present a scheme for obtaining stable Casimir suspension of dielectric nontouching objects immersed in a fluid, validated here in various geometries consisting of ethanol-separated dielectric spheres and semi-infinite slabs. Stability is induced by the dispersion properties of real dielectric (monolithic) materials. A consequence of this effect is the possibility of stable configurations (clusters) of compact objects, which we illustrate via a molecular two-sphere dicluster geometry consiting of two bound spheres levitated above a gold slab. Our calculations also reveal a strong interplay between material and geometric dispersion, and this is exemplified by the qualitatively different stability behavior observed in planar versus spherical geometries.
We derive upper and lower bounds on the Casimir--Polder force between an anisotropic dipolar body and a macroscopic body separated by vacuum via algebraic properties of Maxwells equations. These bounds require only a coarse characterization of the system---the material composition of the macroscopic object, the polarizability of the dipole, and any convenient partition between the two objects---to encompass all structuring possibilities. We find that the attractive Casimir--Polder force between a polarizable dipole and a uniform planar semi-infinite bulk medium always comes within 10% of the lower bound, implying that nanostructuring is of limited use for increasing attraction. In contrast, the possibility of repulsion is observed even for isotropic dipoles, and is routinely found to be several orders of magnitude larger than any known design, including recently predicted geometries involving conductors with sharp edges. Our results have ramifications for the design of surfaces to trap, suspend, or adsorb ultracold gases.
Our previous article [Phys. Rev. Lett. 104, 060401 (2010)] predicted that Casimir forces induced by the material-dispersion properties of certain dielectrics can give rise to stable configurations of objects. This phenomenon was illustrated via a dicluster configuration of non-touching objects consisting of two spheres immersed in a fluid and suspended against gravity above a plate. Here, we examine these predictions from the perspective of a practical experiment and consider the influence of non-additive, three-body, and nonzero-temperature effects on the stability of the two spheres. We conclude that the presence of Brownian motion reduces the set of experimentally realizable silicon/teflon spherical diclusters to those consisting of layered micro-spheres, such as the hollow- core (spherical shells) considered here.
Casimir and Casimir-Polder repulsion have been known for more than 50 years. The general Lifshitz configuration of parallel semi-infinite dielectric slabs permits repulsion if they are separated by a dielectric fluid that has a value of permittivity that is intermediate between those of the dielectric slabs. This was indirectly confirmed in the 1970s, and more directly by Capassos group recently. It has also been known for many years that electrically and magnetically polarizable bodies can experience a repulsive quantum vacuum force. More amenable to practical application are situations where repulsion could be achieved between ordinary conducting and dielectric bodies in vacuum. The status of the field of Casimir repulsion with emphasis on recent developments will be surveyed. Here, stress will be placed on analytic developments, especially of Casimir-Polder (CP) interactions between anisotropically polarizable atoms, and CP interactions between anisotropic atoms and bodies that also exhibit anisotropy, either because of anisotropic constituents, or because of geometry. Repulsion occurs for wedge-shaped and cylindrical conductors, provided the geometry is sufficiently asymmetric, that is, either the wedge is sufficiently sharp or the atom is sufficiently far from the cylinder.
We investigate repulsive Casimir force between slabs containing left-handed materials with controllable electromagnetic properties. The sign of Casimir force is determined by the electric and magnetic properties of the materials, and it is shown that the formation of the repulsive force is related to the wave impedances of two slabs. The sign change of the Casimir force as a function of the distance is studied. Special emphasis is put on the restoring Casimir force which may be found to exist between perfectly conducting material and metamaterial slabs. This restoring force is a natural power for the system oscillation in vacuum and also can be used for system stabilization.
Electromagnetism in substance is characterized by permittivity (dielectric constant) and permeability (magnetic permeability). They describe the substance property {it effectively}. We present a {it geometric} approach to it. Some models are presented, where the two quantities are geometrically defined. Fluctuation due to the micro dynamics (such as dipole-dipole interaction) is taken into account by the (generalized) path-integral. Free energy formula (Lifshitz 1954), for the material composed of three regions with different permittivities, is explained. Casimir energy is obtained by a new regularization using the path-integral. Attractive force or repulsive one is determined by the sign of the {it renormalization-group} $beta$-function.