Do you want to publish a course? Click here

Renormalization Group Approach to Casimir Effect and the Attractive and Repulsive Forces in Substance

459   0   0.0 ( 0 )
 Added by Shoichi Ichinose
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

Electromagnetism in substance is characterized by permittivity (dielectric constant) and permeability (magnetic permeability). They describe the substance property {it effectively}. We present a {it geometric} approach to it. Some models are presented, where the two quantities are geometrically defined. Fluctuation due to the micro dynamics (such as dipole-dipole interaction) is taken into account by the (generalized) path-integral. Free energy formula (Lifshitz 1954), for the material composed of three regions with different permittivities, is explained. Casimir energy is obtained by a new regularization using the path-integral. Attractive force or repulsive one is determined by the sign of the {it renormalization-group} $beta$-function.



rate research

Read More

We derive upper and lower bounds on the Casimir--Polder force between an anisotropic dipolar body and a macroscopic body separated by vacuum via algebraic properties of Maxwells equations. These bounds require only a coarse characterization of the system---the material composition of the macroscopic object, the polarizability of the dipole, and any convenient partition between the two objects---to encompass all structuring possibilities. We find that the attractive Casimir--Polder force between a polarizable dipole and a uniform planar semi-infinite bulk medium always comes within 10% of the lower bound, implying that nanostructuring is of limited use for increasing attraction. In contrast, the possibility of repulsion is observed even for isotropic dipoles, and is routinely found to be several orders of magnitude larger than any known design, including recently predicted geometries involving conductors with sharp edges. Our results have ramifications for the design of surfaces to trap, suspend, or adsorb ultracold gases.
Both theoretical interest and practical significance attach to the sign and strength of Casimir forces. A famous, discouraging no-go theorem states that The Casimir force between two bodies with reflection symmetry is always attractive. Here we identify a loophole in the reasoning, and propose a universal way to realize repulsive Casimir forces. We show that the sign and strength of Casimir forces can be adjusted by inserting optically active or gyrotropic media between bodies, and modulated by external fields.
Casimir and Casimir-Polder repulsion have been known for more than 50 years. The general Lifshitz configuration of parallel semi-infinite dielectric slabs permits repulsion if they are separated by a dielectric fluid that has a value of permittivity that is intermediate between those of the dielectric slabs. This was indirectly confirmed in the 1970s, and more directly by Capassos group recently. It has also been known for many years that electrically and magnetically polarizable bodies can experience a repulsive quantum vacuum force. More amenable to practical application are situations where repulsion could be achieved between ordinary conducting and dielectric bodies in vacuum. The status of the field of Casimir repulsion with emphasis on recent developments will be surveyed. Here, stress will be placed on analytic developments, especially of Casimir-Polder (CP) interactions between anisotropically polarizable atoms, and CP interactions between anisotropic atoms and bodies that also exhibit anisotropy, either because of anisotropic constituents, or because of geometry. Repulsion occurs for wedge-shaped and cylindrical conductors, provided the geometry is sufficiently asymmetric, that is, either the wedge is sufficiently sharp or the atom is sufficiently far from the cylinder.
We present a scheme for obtaining stable Casimir suspension of dielectric nontouching objects immersed in a fluid, validated here in various geometries consisting of ethanol-separated dielectric spheres and semi-infinite slabs. Stability is induced by the dispersion properties of real dielectric (monolithic) materials. A consequence of this effect is the possibility of stable configurations (clusters) of compact objects, which we illustrate via a molecular two-sphere dicluster geometry consiting of two bound spheres levitated above a gold slab. Our calculations also reveal a strong interplay between material and geometric dispersion, and this is exemplified by the qualitatively different stability behavior observed in planar versus spherical geometries.
We use the extended Lifshitz theory to study the behaviors of the Casimir forces between finite-thickness effective medium slabs. We first study the interaction between a semi-infinite Drude metal and a finite-thickness magnetic slab with or without substrate. For no substrate, the large distance $d$ dependence of the force is repulsive and goes as $1/d^5$; for the Drude metal substrate, a stable equilibrium point appears at an intermediate distance which can be tuned by the thickness of the slab. We then study the interaction between two identical chiral metamaterial slabs with and without substrate. For no substrate, the finite thickness of the slabs $D$ does not influence significantly the repulsive character of the force at short distances, while the attractive character at large distances becomes weaker and behaves as $1/d^6$; for the Drude metal substrate, the finite thickness of the slabs $D$ does not influence the repulsive force too much at short distances until $D=0.05lambda_0$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا