No Arabic abstract
Our previous article [Phys. Rev. Lett. 104, 060401 (2010)] predicted that Casimir forces induced by the material-dispersion properties of certain dielectrics can give rise to stable configurations of objects. This phenomenon was illustrated via a dicluster configuration of non-touching objects consisting of two spheres immersed in a fluid and suspended against gravity above a plate. Here, we examine these predictions from the perspective of a practical experiment and consider the influence of non-additive, three-body, and nonzero-temperature effects on the stability of the two spheres. We conclude that the presence of Brownian motion reduces the set of experimentally realizable silicon/teflon spherical diclusters to those consisting of layered micro-spheres, such as the hollow- core (spherical shells) considered here.
In this paper we study an archetypical scenario in which repulsive Casimir-Polder forces between an atom or molecule and two macroscopic bodies can be achieved. This is an extension of previous studies of the interaction between a polarizable atom and a wedge, in which repulsion occurs if the atom is sufficiently anisotropic and close enough to the symmetry plane of the wedge. A similar repulsion occurs if such an atom passes a thin cylinder or a wire. An obvious extension is to compute the interaction between such an atom and two facing wedges, which includes as a special case the interaction of an atom with a conducting screen possessing a slit, or between two parallel wires. To this end we further extend the electromagnetic multiple-scattering formalism for three-body interactions. To test this machinery we reinvestigate the interaction of a polarizable atom between two parallel conducting plates. In that case, three-body effects are shown to be small, and are dominated by three- and four-scattering terms. The atom-wedge calculation is illustrated by an analogous scalar situation, described in the Appendix. The wedge-wedge-atom geometry is difficult to analyze because this is a scale-free problem. But it is not so hard to investigate the three-body corrections to the interaction between an anisotropic atom or nanoparticle and a pair of parallel conducting cylinders, and show that the three-body effects are very small and do not affect the Casimir-Polder repulsion at large distances between the cylinders. Finally, we consider whether such highly anisotropic atoms needed for repulsion are practically realizable. Since this appears rather difficult to accomplish, it may be more feasible to observe such effects with highly anisotropic nano particles.
We present a scheme for obtaining stable Casimir suspension of dielectric nontouching objects immersed in a fluid, validated here in various geometries consisting of ethanol-separated dielectric spheres and semi-infinite slabs. Stability is induced by the dispersion properties of real dielectric (monolithic) materials. A consequence of this effect is the possibility of stable configurations (clusters) of compact objects, which we illustrate via a molecular two-sphere dicluster geometry consiting of two bound spheres levitated above a gold slab. Our calculations also reveal a strong interplay between material and geometric dispersion, and this is exemplified by the qualitatively different stability behavior observed in planar versus spherical geometries.
The dielectric sphere has been an important test case for understanding and calculating the vacuum force of a dielectric body onto itself. Here we develop a method for computing this force in homogeneous spheres of arbitrary dielectric properties embedded in arbitrary homogeneous backgrounds, assuming only that both materials are isotropic and dispersionless. Our results agree with known special cases; most notably we reproduce the prediction of Boyer and Schwinger et al. of a repulsive Casimir force of a perfectly reflecting shell. Our results disagree with the literature in the dilute limit. We argue that Casimir forces can not be regarded as due to pair-wise Casimir-Polder interactions, but rather due to reflections of virtual electromagnetic waves.
A new closed virial equation of state of hard-sphere fluids is proposed which reproduces the calculated or estimated values of the first sixteen virial coefficients at the same time as giving very good accuracy when compared with computer simulation data for the compressibility factor over the entire fluid range, and having a pole at the correct closest packing density.
The asymptotic expansion method is extended by using currently available accurate values for the first ten virial coefficients for hard sphere fluids. It is then used to yield an equation of state for hard sphere fluids, which accurately represents the currently accepted values for the first sixteen virial coefficients and compressibility factor data in both the stable and the metastable regions of the phase diagram.