Do you want to publish a course? Click here

First results of ETMC simulations with Nf=2+1+1 maximally twisted mass fermions

315   0   0.0 ( 0 )
 Added by Siebren Reker
 Publication date 2009
  fields
and research's language is English




Ask ChatGPT about the research

We present first results from runs performed with Nf=2+1+1 flavours of dynamical twisted mass fermions at maximal twist: a degenerate light doublet and a mass split heavy doublet. An overview of the input parameters and tuning status of our ensembles is given, together with a comparison with results obtained with Nf=2 flavours. The problem of extracting the mass of the K- and D-mesons is discussed, and the tuning of the strange and charm quark masses examined. Finally we compare two methods of extracting the lattice spacings to check the consistency of our data and we present some first results of ChiPT fits in the light meson sector.



rate research

Read More

Pi-Pi scattering is investigated for the first time for Nf=2+1+1 dynamical quark flavours using Wilson twisted mass fermions. Luschers finite size method is used to relate energy shifts in finite volume to scattering quantities like the scattering length in the I=2 channel. The computation is performed at several pion masses and lattice spacings utilising the stochastic LapH method.
We present results of lattice QCD simulations with mass-degenerate up and down and mass-split strange and charm (Nf=2+1+1) dynamical quarks using Wilson twisted mass fermions at maximal twist. The tuning of the strange and charm quark masses is performed at three values of the lattice spacing a~0.06 fm, a~0.08 fm and a~0.09 fm with lattice sizes ranging from L~1.9 fm to L~3.9 fm. We perform a preliminary study of SU(2) chiral perturbation theory by combining our lattice data from these three values of the lattice spacing.
141 - C. Alexandrou 2014
We present results on the masses of the low-lying baryons using ten ensembles of gauge configurations with $N_f =2+1+1$ dynamical twisted mass fermions, at three values of the lattice spacing, spanning a pion mass range from about 210 MeV to about 430 MeV. The strange and charm quark masses are tuned to approximately their physical values. We examine isospin symmetry breaking effects on the baryon mass and the dependence on the lattice spacing. After taking the continuum limit we use chiral perturbation theory to extrapolate to the physical vlaue of the pion mass for all forty baryons. We provide predictions for the masses of doubly and triply charmed baryons that have not yet been measured experimentally.
249 - C. Alexandrou 2014
The masses of the low lying baryons are evaluated using a total of ten ensembles of dynamical twisted mass fermion gauge configurations. The simulations are performed using two degenerate flavors of light quarks, and a strange and a charm quark fixed to approximately their physical values. The light sea quarks correspond to pseudo scalar masses in the range of about 210~MeV to 430~MeV. We use the Iwasaki improved gluonic action at three values of the coupling constant corresponding to lattice spacing $a=0.094$~fm, 0.082~fm and 0.065~fm determined from the nucleon mass. We check for both finite volume and cut-off effects on the baryon masses. We examine the issue of isospin symmetry breaking for the octet and decuplet baryons and its dependence on the lattice spacing. We show that in the continuum limit isospin breaking is consistent with zero, as expected. We performed a chiral extrapolation of the forty baryon masses using SU(2) $chi$PT. After taking the continuum limit and extrapolating to the physical pion mass our results are in good agreement with experiment. We provide predictions for the mass of the doubly charmed $Xi_{cc}^*$, as well as of the doubly and triply charmed $Omega$s that have not yet been determined experimentally.
We present a lattice QCD calculation of the up, down, strange and charm quark masses performed using the gauge configurations produced by the European Twisted Mass Collaboration with Nf = 2 + 1 + 1 dynamical quarks, which include in the sea, besides two light mass degenerate quarks, also the strange and charm quarks with masses close to their physical values. The simulations are based on a unitary setup for the two light quarks and on a mixed action approach for the strange and charm quarks. The analysis uses data at three values of the lattice spacing and pion masses in the range 210 - 450 MeV, allowing for accurate continuum limit and controlled chiral extrapolation. The quark mass renormalization is carried out non-perturbatively using the RI-MOM method. The results for the quark masses converted to the bar{MS} scheme are: mud(2 GeV) = 3.70(17) MeV, ms(2 GeV) = 99.6(4.3) MeV and mc(mc) = 1.348(46) GeV. We obtain also the quark mass ratios ms/mud = 26.66(32) and mc/ms = 11.62(16). By studying the mass splitting between the neutral and charged kaons and using available lattice results for the electromagnetic contributions, we evaluate mu/md = 0.470(56), leading to mu = 2.36(24) MeV and md = 5.03(26) MeV.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا