No Arabic abstract
In this paper we examine the contribution of galaxies with different infrared (IR) spectral energy distributions (SEDs) to the comoving infrared luminosity density, a proxy for the comoving star formation rate (SFR) density. We characterise galaxies as having either a cold or hot IR SED depending upon whether the rest-frame wavelength of their peak IR energy output is above or below 90um. Our work is based on a far-IR selected sample both in the local Universe and at high redshift, the former consisting of IRAS 60um-selected galaxies at z<0.07 and the latter of Spitzer 70um selected galaxies across 0.1<z<1. We find that the total IR luminosity densities for each redshift/luminosity bin agree well with results derived from other deep mid/far-IR surveys. At z<0.07 we observe the previously known results: that moderate luminosity galaxies (L_IR<10^11 Lsun) dominate the total luminosity density and that the fraction of cold galaxies decreases with increasing luminosity, becoming negligible at the highest luminosities. Conversely, above z=0.1 we find that luminous IR galaxies (L_IR>10^11 Lsun), the majority of which are cold, dominate the IR luminosity density. We therefore infer that cold galaxies dominate the IR luminosity density across the whole 0<z<1 range, hence appear to be the main driver behind the increase in SFR density up to z~1 whereas local luminous galaxies are not, on the whole, representative of the high redshift population.
We analyze the multi-wavelength photometric and spectroscopic data of 12 ultraluminous infrared galaxies (ULIRGs) at z ~ 1 and compare them with models of stars and dust in order to study the extinction law and star formation in young infrared (IR) galaxies. Five extinction curves, namely, the Milky Way (MW), the pseudo MW which is MW-like without the 2175 Angstrom feature, the Calzetti, and two SN dust curves, are applied to the data, by combining with various dust distributions, namely, the uniform dust screen, the clumpy dust screen, the internal dust geometry, and the composite geometry with a combination of dust screen and internal dust. Employing a minimum chi square method, we find that the foreground dust screen geometry, especially combined with the 8 - 40 M_sun SN extinction curve, provides a good approximation to the real dust geometry, whereas internal dust is only significant in 2 galaxies. The SN extinction curves, which are flatter than the others, reproduce the data of 8(67%) galaxies better. Dust masses are estimated to be in excess of ~ 10^8 M_sun. Inferred ages of the galaxies are very young, 8 of which range from 10 to 650 Myr. The SN-origin dust is the most plausible to account for the vast amount of dust masses and the flat slope of the observed extinction law. The inferred dust mass per SN ranges from 0.01 to 0.4 M_sun/SN.
We measure the evolution in the intrinsic shape distribution of early-type galaxies from z~1 to z~0 by analyzing their projected axis-ratio distributions. We extract a low-redshift sample (0.04 < z < 0.08) of early-type galaxies with very low star-formation rates from the SDSS, based on a color-color selection scheme and verified through the absence of emission lines in the spectra. The inferred intrinsic shape distribution of these early-type galaxies is strongly mass dependent: the typical short-to-long intrinsic axis-ratio of high-mass early-type galaxies (>1e11 M_sun) is 2:3, where as at masses below 1e11 M_sun this ratio narrows to 1:3, or more flattened galaxies. In an entirely analogous manner we select a high-redshift sample (0.6 < z < 0.8) from two deep-field surveys: GEMS and COSMOS. We find a seemingly universal mass of ~1e11 M_sun for highly flatted early-type systems at all redshifts. This implies that the process that grows an early-type galaxy above this ceiling mass involves forming round systems. Using both parametric and non-parametric tests, we find no evolution in the projected axis-ratio distribution for galaxies with masses >3e10 M_sun with redshift. At the same time, our samples imply an increase of 2-3x in co-moving number density for early-type galaxies at masses >3e10 M_sun, in agreement with previous studies. Given the direct connection between the axis-ratio distribution and the underlying bulge-to-disk ratio distribution, our findings imply that the number density evolution of early-type galaxies is not exclusively driven by the emergence of either bulge- or disk-dominated galaxies, but rather by a balanced mix that depends only on the stellar mass of the galaxy. The challenge for galaxy formation models is to reproduce this overall non-evolving ratio of flattened to round early-type galaxies in the context of a continually growing population.
By cross-correlating AKARI infrared (IR) sources with the SDSS galaxies, we identified 2357 infrared galaxies with a spectroscopic redshift. This is not just one of the largest samples of local IR galaxies, but AKARI provides crucial FIR bands (9, 18, 65, 90, 140, and 160um) in accurately measuring galaxy SED across the peak of the dust emission at ~100um. By fitting modern IR SED models to the AKARI photometry, we measured the total infrared luminosity (L_IR) of individual galaxies more accurately. Using this L_IR, we constructed luminosity functions of infrared galaxies at a median redshift of z=0.031, with 4 times larger sample than previous work. The LF agrees well with that at z=0.0082 (RBGS), showing smooth and continuous evolution toward higher redshift LFs measured in the AKARI NEP deep field. The derived local cosmic IR luminosity density is Omega_IR=3.8x10^8 LsunMpc^-3. We separate galaxies into AGN, star-forming, and composite by using the [NII]/Ha vs [OIII]/Hb line ratios. The fraction of AGN shows a continuous increase with increasing L_IR from 25% to 90% at 9<log L_IR<12.5. The SFR_Ha and L_[OIII] show good correlations with L_IR for SFG (star-forming galaxies) and AGN, respectively. The self-absorption corrected Ha/Hb ratio shows a weak increase with L_IR with a substantial scatter. When we separate IR LFs into contributions from AGN and SFG, the AGN contribution becomes dominant at L_IR>10^11Lsun, coinciding the break of the both SFG and AGN IR LFs. At L_IR<10^11Lsun, SFG dominates IR Lfs. Only 1.1% of Omega_IR is produced by LIRG, and only 0.03% is by ULIRG in the local Universe. This work also provides the most accurate infrared luminosity density of the local Universe to date. Compared with high redshift results from the AKARI NEP deep survey, we observed a strong evolution of Omega_IR^SFG ~(1+z)^4.1+-0.4 and Omega_IR^AGN ~(1+z)^4.1+-0.5 (abridged).
We present the rest-frame 8 micron luminosity function (LF) at redshifts z=1 and ~2, computed from Spitzer 24 micron-selected galaxies in the GOODS fields over an area of 291 sq. arcmin. Using classification criteria based on X-ray data and IRAC colours, we identify the AGN in our sample. The rest-frame 8 micron LF for star-forming galaxies at redshifts z=1 and ~2 have the same shape as at z~0, but with a strong positive luminosity evolution. The number density of star-forming galaxies with log_{10}(nu L_nu(8 micron))>11 increases by a factor >250 from redshift z~0 to 1, and is basically the same at z=1 and ~2. The resulting rest-frame 8 micron luminosity densities associated with star formation at z=1 and ~2 are more than four and two times larger than at z~0, respectively. We also compute the total rest-frame 8 micron LF for star-forming galaxies and AGN at z~2 and show that AGN dominate its bright end, which is well-described by a power-law. Using a new calibration based on Spitzer star-forming galaxies at 0<z<0.6 and validated at higher redshifts through stacking analysis, we compute the bolometric infrared (IR) LF for star-forming galaxies at z=1 and ~2. We find that the respective bolometric IR luminosity densities are (1.2+/-0.2) x 10^9 and (6.6^{+1.2}_{-1.0}) x 10^8 L_sun Mpc^{-3}, in agreement with previous studies within the error bars. At z~2, around 90% of the IR luminosity density associated with star formation is produced by luminous and ultraluminous IR galaxies (LIRG and ULIRG), with the two populations contributing in roughly similar amounts. Finally, we discuss the consistency of our findings with other existing observational results on galaxy evolution.
We construct a flux-limited sample of 135 candidate z~1 Lya emitters (LAEs) from Galaxy Evolution Explorer (GALEX) grism data using a new data cube search method. These LAEs have luminosities comparable to those at high redshifts and lie within a 7 Gyr gap present in existing LAE samples. We use archival and newly obtained optical spectra to verify the UV redshifts of these LAEs. We use the combination of the GALEX UV spectra, optical spectra, and X-ray imaging data to estimate the active galactic nucleus (AGN) fraction and its dependence on Lya luminosity. We remove the AGNs and compute the luminosity function (LF) from 60 z~1 LAE galaxies. We find that the best fit LF implies a luminosity density increase by a factor of ~1.5 from z~0.3 to z~1 and ~20 from z~1 to z~2. We find a z~1 volumetric Lya escape fraction of 0.7+/-0.4%.