Do you want to publish a course? Click here

The infrared luminosity function of galaxies at redshifts z=1 and z~2 in the GOODS fields

218   0   0.0 ( 0 )
 Added by Karina Caputi
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the rest-frame 8 micron luminosity function (LF) at redshifts z=1 and ~2, computed from Spitzer 24 micron-selected galaxies in the GOODS fields over an area of 291 sq. arcmin. Using classification criteria based on X-ray data and IRAC colours, we identify the AGN in our sample. The rest-frame 8 micron LF for star-forming galaxies at redshifts z=1 and ~2 have the same shape as at z~0, but with a strong positive luminosity evolution. The number density of star-forming galaxies with log_{10}(nu L_nu(8 micron))>11 increases by a factor >250 from redshift z~0 to 1, and is basically the same at z=1 and ~2. The resulting rest-frame 8 micron luminosity densities associated with star formation at z=1 and ~2 are more than four and two times larger than at z~0, respectively. We also compute the total rest-frame 8 micron LF for star-forming galaxies and AGN at z~2 and show that AGN dominate its bright end, which is well-described by a power-law. Using a new calibration based on Spitzer star-forming galaxies at 0<z<0.6 and validated at higher redshifts through stacking analysis, we compute the bolometric infrared (IR) LF for star-forming galaxies at z=1 and ~2. We find that the respective bolometric IR luminosity densities are (1.2+/-0.2) x 10^9 and (6.6^{+1.2}_{-1.0}) x 10^8 L_sun Mpc^{-3}, in agreement with previous studies within the error bars. At z~2, around 90% of the IR luminosity density associated with star formation is produced by luminous and ultraluminous IR galaxies (LIRG and ULIRG), with the two populations contributing in roughly similar amounts. Finally, we discuss the consistency of our findings with other existing observational results on galaxy evolution.



rate research

Read More

We present the IR luminosity function derived from ultra-deep 70 micron imaging of the GOODS-North field. The 70 micron observations are longward of the PAH and silicate features which complicate work in the MIR. We derive far-infrared luminosities for the 143 sources with S_{70} > 2 mJy (S/N > 3 sigma). The majority (81%) of the sources have spectroscopic redshifts, and photometric redshifts are calculated for the remainder. The IR luminosity function at four redshifts (z ~ 0.28, 0.48, 0.78, and 0.97) is derived and compared to the local one. There is considerable degeneracy between luminosity and density evolution. If the evolving luminosity function is described as rho(L, z) = (1 + z)^q rho(L/(1 + z)^p, 0), we find q = -2.19p + 6.09. In the case of pure luminosity evolution, we find a best fit of p = 2.78^{+0.34}_{-0.32}. This is consistent with the results from 24 micron and 1.4 GHz studies. Our results confirm the emerging picture of strong evolution in LIRGs and ULIRGs at 0.4 < z < 1.1, but we find no evidence of significant evolution in the sub-LIRG (L < 10^{11} L_{odot}) population for z < 0.4.
Using deep 100-160 micron observations in GOODS-S from the GOODS-H survey, combined with HST/WFC3 NIR imaging from CANDELS, we present the first morphological analysis of a complete, FIR selected sample of 52 ULIRGs at z~2. We also make use of a comparison sample of galaxies without Herschel detections but with the same z and magnitude distribution. Our visual classifications of these two samples indicate that the fraction of objects with disk and spheroid morphologies is roughly the same but that there are significantly more mergers, interactions, and irregular galaxies among the ULIRGs. The combination of disk and irregular/interacting morphologies suggests that early stage interactions and minor mergers could play an important role in ULIRGs at z~2. We compare these fractions with those of a z~1 sample across a wide luminosity range and find that the fraction of disks decreases systematically with L_IR while the fraction of mergers and interactions increases, as has been observed locally. At comparable luminosities, the fraction of ULIRGs with various morphological classifications is similar at z~2 and z~1. We investigate the position of the ULIRGs, along with 70 LIRGs, on the specific star formation rate versus redshift plane, and find 52 systems to be starbursts (lie more than a factor of 3 above the main sequence relation). The morphologies of starbursts are dominated by interacting and merging systems (50%). If irregular disks are included as potential minor mergers, then we find that up to 73% of starbursts are involved in a merger or interaction at some level. Although the final coalescence of a major merger may not be required for the high luminosities of ULIRGs at z~2 as is the case locally, the large fraction of interactions at all stages and potential minor mergers suggest that the high star formation rates of ULIRGs are still largely externally triggered at z~2.
The remarkable HST datasets from the CANDELS, HUDF09, HUDF12, ERS, and BoRG/HIPPIES programs have allowed us to map out the evolution of the UV LF from z~10 to z~4. We have identified 5859, 3001, 857, 481, 217, and 6 galaxy candidates at z~4, z~5, z~6, z~7, z~8, and z~10, respectively from the ~1000 arcmin**2 area probed. The selection of z~4-8 galaxies over the five CANDELS fields allows us to assess the cosmic variance; the largest variations are apparent at z>=7. Our new LF determinations at z~4 and z~5 span a 6-mag baseline (-22.5 to -16 AB mag). These determinations agree well with previous estimates, but the larger samples and volumes probed here result in a more reliable sampling of >L* galaxies and allow us to reassess the form of the UV LFs. Our new LF results strengthen our earlier findings to 3.4 sigma significance for a steeper faint-end slope to the UV LF at z>4, with alpha evolving from alpha=-1.64+/-0.04 at z~4 to alpha=-2.06+/-0.13 at z~7 (and alpha = -2.02+/-0.23 at z~8), consistent with that expected from the evolution of the halo mass function. With our improved constraints at the bright end, we find less evolution in the characteristic luminosity M* over the redshift range z~4 to z~7; the observed evolution in the LF is now largely represented by changes in phi*. No evidence for a non-Schechter-like form to the z~4-8 LFs is found. A simple conditional LF model based on halo growth and evolution in the M/L ratio of halos ((1+z)**-1.5) provides a good representation of the observed evolution.
We use all available deep optical ACS and near-IR data over both the HUDF and the two GOODS fields to search for star-forming galaxies at z>~7 and constrain the UV LF within the first 700 Myrs. Our data set includes ~23 arcmin^2 of deep NICMOS J+H data and ~248 arcmin^2 of ground-based (ISAAC+MOIRCS) data, coincident with ACS optical data of greater or equal depths. In total, we find 8 <z>~7.3 z-dropouts in our search fields, but no z~9 J-dropout candidates. A careful consideration of a wide variety of different contaminants suggest an overall contamination level of just ~12% for our z-dropout selection. After performing detailed simulations to accurately estimate the selection volumes, we derive constraints on the UV LFs at z~7 and z~9. For a faint-end slope alpha=-1.74, our most likely values for M*(UV) and phi* at z~7 are -19.8+/-0.4 mag and 1.1_{-0.7}^{+1.7} x 10^{-3} Mpc^{-3}, respectively. Our search results for z~9 J-dropouts set a 1 sigma lower limit on M*(UV) of -19.6 mag assuming that phi* and alpha are the same as their values at slightly later times. This lower limit on M*(UV) is 1.4 mag fainter than our best-fit value at z~4, suggesting that the UV LF has undergone substantial evolution over this time period. No evolution is ruled out at 99% confidence from z~7 to z~6 and at 80% confidence from z~9 to z~7. The inferred brightening in M*(UV) with redshift (i.e., M*(UV) = (-21.02+/-0.09) + (0.36+/-0.08)(z - 3.8)) matches the evolution expected in the halo mass function, if the mass-to-light ratio of halos evolves as ~(1+z)**{-1}. Finally, we consider the shape of the UV LF at z>~5 and discuss the implications of the Schechter-like form of the observed LFs, particularly the unexpected abrupt cut-off at the bright end.
76 - M. Symeonidis , M. Page 2018
We investigate what powers hyperluminous infrared galaxies (HyLIRGs; LIR(8-1000um)>10^13 Lsun) at z~1-2, by examining the behaviour of the infrared AGN luminosity function in relation to the infrared galaxy luminosity function. The former corresponds to emission from AGN-heated dust only, whereas the latter includes emission from dust heated by stars and AGN. Our results show that the two luminosity functions are substantially different below 10^13 Lsun but converge in the HyLIRG regime. We find that the fraction of AGN dominated sources increases with total infrared luminosity and at LIR >10^13.5 Lsun AGN can account for the entire infrared emission. We conclude that the bright end of the 1<z<2 infrared galaxy luminosity function is shaped by AGN rather than star-forming galaxies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا