Do you want to publish a course? Click here

Antiferromagnetism of Repulsively Interacting Fermions in a harmonic trap

149   0   0.0 ( 0 )
 Added by Jianqing Qi
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose a Real-Space Gutzwiller variational approach and apply it to a system of repulsively interacting ultracold fermions with spin 1/2 trapped in an optical lattice with a harmonic confinement. Using the Real-Space Gutzwiller variational approach, we find that in system with balanced spin-mixtures on a square lattice, antiferromagnetism either appears in a checkerboard pattern or forms a ring and antiferromagnetic order is stable in the regions where the particle density is close to one, which is consistent with the recent results obtained by the Real-Space Dynamical Mean-field Theory approach. We also investigate the imbalanced case and find that antiferromagnetic order is suppressed there.



rate research

Read More

Extending our previous work, we explore the breathing mode---the [uniform] radial expansion and contraction of a spatially confined system. We study the breathing mode across the transition from the ideal quantum to the classical regime and confirm that it is not independent of the pair interaction strength (coupling parameter). We present the results of time-dependent Hartree-Fock simulations for 2 to 20 fermions with Coulomb interaction and show how the quantum breathing mode depends on the particle number. We validate the accuracy of our results, comparing them to exact Configuration Interaction results for up to 8 particles.
377 - Hao Xie , Linfeng Zhang , Lei Wang 2021
We present a variational density matrix approach to the thermal properties of interacting fermions in the continuum. The variational density matrix is parametrized by a permutation equivariant many-body unitary transformation together with a discrete probabilistic model. The unitary transformation is implemented as a quantum counterpart of neural canonical transformation, which incorporates correlation effects via a flow of fermion coordinates. As the first application, we study electrons in a two-dimensional quantum dot with an interaction-induced crossover from Fermi liquid to Wigner molecule. The present approach provides accurate results in the low-temperature regime, where conventional quantum Monte Carlo methods face severe difficulties due to the fermion sign problem. The approach is general and flexible for further extensions, thus holds the promise to deliver new physical results on strongly correlated fermions in the context of ultracold quantum gases, condensed matter, and warm dense matter physics.
127 - M. Snoek , I. Titvinidze , C. Toke 2008
We apply Dynamical Mean-Field Theory to strongly interacting fermions in an inhomogeneous environment. With the help of this Real-Space Dynamical Mean-Field Theory (R-DMFT) we investigate antiferromagnetic states of repulsively interacting fermions with spin 1/2 in a harmonic potential. Within R-DMFT, antiferromagnetic order is found to be stable in spatial regions with total particle density close to one, but persists also in parts of the system where the local density significantly deviates from half filling. In systems with spin imbalance, we find that antiferromagnetism is gradually suppressed and phase separation emerges beyond a critical value of the spin imbalance.
445 - J. P. Kestner , L.-M. Duan 2007
We present a solution of the three-fermion problem in a harmonic potential across a Feshbach resonance. We compare the spectrum with that of the two-body problem and show that it is energetically unfavorable for the three fermions to occupy one lattice site rather than two. We also demonstrate the existence of an energy level crossing in the ground state with a symmetry change of its wave function, suggesting the possibility of a phase transition for the corresponding many-body case.
We compute exactly the average spatial density for $N$ spinless noninteracting fermions in a $2d$ harmonic trap rotating with a constant frequency $Omega$ in the presence of an additional repulsive central potential $gamma/r^2$. We find that, in the large $N$ limit, the bulk density has a rich and nontrivial profile -- with a hole at the center of the trap and surrounded by a multi-layered wedding cake structure. The number of layers depends on $N$ and on the two parameters $Omega$ and $gamma$ leading to a rich phase diagram. Zooming in on the edge of the $k^{rm th}$ layer, we find that the edge density profile exhibits $k$ kinks located at the zeroes of the $k^{rm th}$ Hermite polynomial. Interestingly, in the large $k$ limit, we show that the edge density profile approaches a limiting form, which resembles the shape of a propagating front, found in the unitary evolution of certain quantum spin chains. We also study how a newly formed droplet grows in size on top of the last layer as one changes the parameters.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا