No Arabic abstract
We apply Dynamical Mean-Field Theory to strongly interacting fermions in an inhomogeneous environment. With the help of this Real-Space Dynamical Mean-Field Theory (R-DMFT) we investigate antiferromagnetic states of repulsively interacting fermions with spin 1/2 in a harmonic potential. Within R-DMFT, antiferromagnetic order is found to be stable in spatial regions with total particle density close to one, but persists also in parts of the system where the local density significantly deviates from half filling. In systems with spin imbalance, we find that antiferromagnetism is gradually suppressed and phase separation emerges beyond a critical value of the spin imbalance.
We propose the use of an orthogonal wave packet basis to analyze the low-energy physics of interacting electron systems with short range order. We give an introduction to wave packets and the related phase space representation of fermion systems, and show that they lend themselves to an efficient description of short range order. We illustrate the approach within an RG calculation for the one-dimensional Hubbard chain.
We propose a Real-Space Gutzwiller variational approach and apply it to a system of repulsively interacting ultracold fermions with spin 1/2 trapped in an optical lattice with a harmonic confinement. Using the Real-Space Gutzwiller variational approach, we find that in system with balanced spin-mixtures on a square lattice, antiferromagnetism either appears in a checkerboard pattern or forms a ring and antiferromagnetic order is stable in the regions where the particle density is close to one, which is consistent with the recent results obtained by the Real-Space Dynamical Mean-field Theory approach. We also investigate the imbalanced case and find that antiferromagnetic order is suppressed there.
We present a dynamical mean-field study of antiferromagnetic magnons in one-, two- and three-orbital Hubbard model of square and bcc cubic lattice at intermediate coupling strength. Weinvestigate the effect of anisotropy introduced by an external magnetic field or single-ion anisotropy.For the latter we tune continuously between the easy-axis and easy-plane models. We also analyzea model with spin-orbit coupling in cubic site-symmetry setting. The ordered states as well as themagnetic excitations are sensitive to even a small breaking ofSU(2)symmetry of the model andfollow the expectations of spin-wave theory as well as general symmetry considerations.
We propose a cellular version of dynamical-mean field theory which gives a natural generalization of its original single-site construction and is formulated in different sets of variables. We show how non-orthogonality of the tight-binding basis sets enters the problem and prove that the resulting equations lead to manifestly causal self energies.
In this brief overview we discuss the principal features of real space pairing as expressed via corresponding low-energy (t-J or periodic Anderson-Kondo) effective Hamiltonian, as well as consider concrete properties of those unconventional superconductors. We also rise the basic question of statistical consistency within the so-called renormalized mean-field theory. In particular, we provide the phase diagrams encompassing the stable magnetic and superconducting states. We interpret real space pairing as correlated motion of fermion pair coupled by short-range exchange interaction of magnitude J comparable to the particle renormalized band energy $sim tx$, where $x$ is the carrier number per site. We also discuss briefly the difference between the real-space and the paramagnon - mediated sources of superconductivity. The paper concentrates both on recent novel results obtained in our research group, as well as puts the theoretical concepts in a conceptual as well as historical perspective. No slave-bosons are required to formulate the present approach.