No Arabic abstract
Spatial structure is known to have an impact on the evolution of cooperation, and so it has been intensively studied during recent years. Previous work has shown the relevance of some features, such as the synchronicity of the updating, the clustering of the network or the influence of the update rule. This has been done, however, for concrete settings with particular games, networks and update rules, with the consequence that some contradictions have arisen and a general understanding of these topics is missing in the broader context of the space of 2x2 games. To address this issue, we have performed a systematic and exhaustive simulation in the different degrees of freedom of the problem. In some cases, we generalize previous knowledge to the broader context of our study and explain the apparent contradictions. In other cases, however, our conclusions refute what seems to be established opinions in the field, as for example the robustness of the effect of spatial structure against changes in the update rule, or offer new insights into the subject, e.g. the relation between the intensity of selection and the asymmetry between the effects on games with mixed equilibria.
We address the issue of the effects of considering a network of contacts on the emergence of cooperation on social dilemmas under myopic best response dynamics. We begin by summarizing the main features observed under less intellectually demanding dynamics, pointing out their most relevant general characteristics. Subsequently we focus on the new framework of best response. By means of an extensive numerical simulation program we show that, contrary to the rest of dynamics considered so far, best response is largely unaffected by the underlying network, which implies that, in most cases, no promotion of cooperation is found with this dynamics. We do find, however, nontrivial results differing from the well-mixed population in the case of coordination games on lattices, which we explain in terms of the formation of spatial clusters and the conditions for their advancement, subsequently discussing their relevance to other networks.
The promotion of cooperation on spatial lattices is an important issue in evolutionary game theory. This effect clearly depends on the update rule: it diminishes with stochastic imitative rules whereas it increases with unconditional imitation. To study the transition between both regimes, we propose a new evolutionary rule, which stochastically combines unconditional imitation with another imitative rule. We find that, surprinsingly, in many social dilemmas this rule yields higher cooperative levels than any of the two original ones. This nontrivial effect occurs because the basic rules induce a separation of timescales in the microscopic processes at cluster interfaces. The result is robust in the space of 2x2 symmetric games, on regular lattices and on scale-free networks.
Punishment may deter antisocial behavior. Yet to punish is costly, and the costs often do not offset the gains that are due to elevated levels of cooperation. However, the effectiveness of punishment depends not only on how costly it is, but also on the circumstances defining the social dilemma. Using the snowdrift game as the basis, we have conducted a series of economic experiments to determine whether severe punishment is more effective than mild punishment. We have observed that severe punishment is not necessarily more effective, even if the cost of punishment is identical in both cases. The benefits of severe punishment become evident only under extremely adverse conditions, when to cooperate is highly improbable in the absence of sanctions. If cooperation is likely, mild punishment is not less effective and leads to higher average payoffs, and is thus the much preferred alternative. Presented results suggest that the positive effects of punishment stem not only from imposed fines, but may also have a psychological background. Small fines can do wonders in motivating us to chose cooperation over defection, but without the paralyzing effect that may be brought about by large fines. The later should be utilized only when absolutely necessary.
We study the coevolutionary dynamics of the diversity of phenotype expression and the evolution of cooperation in the Prisoners Dilemma game. Rather than pre-assigning zero-or-one interaction rate, we diversify the rate of interaction by associating it with the phenotypes shared in common. Individuals each carry a set of potentially expressible phenotypes and expresses a certain number of phenotypes at a cost proportional to the number. The number of expressed phenotypes and thus the rate of interaction is an evolvable trait. Our results show that nonnegligible cost of expressing phenotypes restrains phenotype expression, and the evolutionary race mainly proceeds on between cooperative strains and defective strains who express a very few phenotypes. It pays for cooperative strains to express a very few phenotypes. Though such a low level of expression weakens reciprocity between cooperative strains, it decelerates rate of interaction between cooperative strains and defective strains to a larger degree, leading to the predominance of cooperative strains over defective strains. We also find that evolved diversity of phenotype expression can occasionally destabilize due to the invasion of defective mutants, implying that cooperation and diversity of phenotype expression can mutually reinforce each other. Therefore, our results provide new insights into better understanding the coevolution of cooperation and the diversity of phenotype expression.
Cooperation is prevalent in nature, not only in the context of social interactions within the animal kingdom, but also on the cellular level. In cancer for example, tumour cells can cooperate by producing growth factors. The evolution of cooperation has traditionally been studied for well-mixed populations under the framework of evolutionary game theory, and more recently for structured populations using evolutionary graph theory. The population structures arising due to cellular arrangement in tissues however are dynamic and thus cannot be accurately represented by either of these frameworks. In this work we compare the conditions for cooperative success in an epithelium modelled using evolutionary graph theory, to those in a mechanical model of an epithelium =- the Voronoi tessellation model. Crucially, in this latter model cells are able to move, and birth and death are not spatially coupled. We calculate fixation probabilities in the Voronoi tessellation model through simulation and an approximate analytic technique and show that this leads to stronger promotion of cooperation in comparison with the evolutionary graph theory model.