No Arabic abstract
In our earlier study dealing with the analysis of neuromagnetic responses (magnetoencephalograms - MEG) to flickering-color stimuli for a group of control human subjects (9 volunteers) and a patient with photosensitive epilepsy (a 12-year old girl), it was shown that Flicker-Noise Spectroscopy (FNS) was able to identify specific differences in the responses of each organism. The high specificity of individual MEG responses manifested itself in the values of FNS parameters for both chaotic and resonant components of the original signal. The present study applies the FNS cross-correlation function to the analysis of correlations between the MEG responses simultaneously measured at spatially separated points of the human cortex processing the red-blue flickering color stimulus. It is shown that the cross-correlations for control (healthy) subjects are characterized by frequency and phase synchronization at different points of the cortex, with the dynamics of neuromagnetic responses being determined by the low-frequency processes that correspond to normal physiological rhythms. But for the patient, the frequency and phase synchronization breaks down, which is associated with the suppression of cortical regulatory functions when the flickering-color stimulus is applied, and higher frequencies start playing the dominating role. This suggests that the disruption of correlations in the MEG responses is the indicator of pathological changes leading to photosensitive epilepsy, which can be used for developing a method of diagnosing the disease based on the analysis with the FNS cross-correlation function.
We study the development of coherent structures in local simulations of the magnetorotational instability in accretion discs in regimes of on-off intermittency. In a previous paper [Chian et al., Phys. Rev. Lett. 104, 254102 (2010)], we have shown that the laminar and bursty states due to the on-off spatiotemporal intermittency in a one-dimensional model of nonlinear waves correspond, respectively, to nonattracting coherent structures with higher and lower degrees of amplitude-phase synchronization. In this paper we extend these results to a three-dimensional model of magnetized Keplerian shear flows. Keeping the kinetic Reynolds number and the magnetic Prandtl number fixed, we investigate two different intermittent regimes by varying the plasma beta parameter. The first regime is characterized by turbulent patterns interrupted by the recurrent emergence of a large-scale coherent structure known as two-channel flow, where the state of the system can be described by a single Fourier mode. The second regime is dominated by the turbulence with sporadic emergence of coherent structures with shapes that are reminiscent of a perturbed channel flow. By computing the Fourier power and phase spectral entropies in three-dimensions, we show that the large-scale coherent structures are characterized by a high degree of amplitude-phase synchronization.
A new set of signals for studying detectability of an x-ray imaging system is presented. The results obtained with these signals are intended to complement the NEQ results. The signals are generated from line spread profiles by progressively removing their lower frequency components and the resulting high frequency residues (HFRs) form the set of signals to be used in detectability studies. Detectability indexes for these HFRs are obtained using a non-prewhitening (NPW) observer and a series of edge images are used to obtain the HFRs, the covariance matrices required by the NPW model and the MTF and NPS used in NEQ calculations. The template used in the model is obtained by simulating the processes of blurring and sampling of the edge images. Comparison between detectability indexes for the HFRs and NEQ are carried out for different acquisition techniques using different beam qualities and doses. The relative sensitivity shown by detectability indexes using HFRs is higher than that of NEQ, especially at lower doses. Also, the different observers produce different results at high doses: while the ideal Bayesian observer used by NEQ distinguishes between beam qualities, the NPW used with the HFRs produces no differences between them. Delta functions used in HFR are the opposite of complex exponential functions in terms of their support in the spatial and frequency domains. Since NEQ can be interpreted as detectability of these complex exponential functions, detectability of HFRs is presented as a natural complement to NEQ in the performance assessment of an imaging system.
In utero diffusion MRI provides unique opportunities to non-invasively study the microstructure of tissue during fetal development. A wide range of developmental processes, such as the growth of white matter tracts in the brain, the maturation of placental villous trees, or the fibres in the fetal heart remain to be studied and understood in detail. Advances in fetal interventions and surgery furthermore increase the need for ever more precise antenatal diagnosis from fetal MRI. However, the specific properties of the in utero environment, such as fetal and maternal motion, increased field-of-view, tissue interfaces and safety considerations, are significant challenges for most MRI techniques, and particularly for diffusion. Recent years have seen major improvements, driven by the development of bespoke techniques adapted to these specific challenges in both acquisition and processing. Fetal diffusion MRI, an emerging research tool, is now adding valuable novel information for both research and clinical questions. This paper will highlight specific challenges, outline strategies to target them, and discuss two main applications: fetal brain connectomics and placental maturation.
We propose a novel formulation for phase synchronization -- the statistical problem of jointly estimating alignment angles from noisy pairwise comparisons -- as a nonconvex optimization problem that enforces consistency among the pairwise comparisons in multiple frequency channels. Inspired by harmonic retrieval in signal processing, we develop a simple yet efficient two-stage algorithm that leverages the multi-frequency information. We demonstrate in theory and practice that the proposed algorithm significantly outperforms state-of-the-art phase synchronization algorithms, at a mild computational costs incurred by using the extra frequency channels. We also extend our algorithmic framework to general synchronization problems over compact Lie groups.
Models of neural responses to stimuli with complex spatiotemporal correlation structure often assume that neurons are only selective for a small number of linear projections of a potentially high-dimensional input. Here we explore recent modeling approaches where the neural response depends on the quadratic form of the input rather than on its linear projection, that is, the neuron is sensitive to the local covariance structure of the signal preceding the spike. To infer this quadratic dependence in the presence of arbitrary (e.g. naturalistic) stimulus distribution, we review several inference methods, focussing in particular on two information-theory-based approaches (maximization of stimulus energy or of noise entropy) and a likelihood-based approach (Bayesian spike-triggered covariance, extensions of generalized linear models). We analyze the formal connection between the likelihood-based and information-based approaches to show how they lead to consistent inference. We demonstrate the practical feasibility of these procedures by using model neurons responding to a flickering variance stimulus.