Do you want to publish a course? Click here

Lyman-Alpha-Emitting Galaxies at z = 2.1 in ECDF-S: Building Blocks of Typical Present-day Galaxies?

139   0   0.0 ( 0 )
 Added by Lucia Guaita miss
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We discovered a sample of 250 Ly-Alpha emitting (LAE) galaxies at z=2.1 in an ultra-deep 3727 A narrow-band MUSYC image of the Extended Chandra Deep Field-South. LAEs were selected to have rest-frame equivalent widths (EW) > 20 A and emission line fluxes > 2.0 x 10^(-17)erg /cm^2/s, after carefully subtracting the continuum contributions from narrow band photometry. The median flux of our sample is 4.2 x 10^(-17)erg/cm^2/s, corresponding to a median Lya luminosity = 1.3 x 10^(42) erg/s at z=2.1. At this flux our sample is > 90% complete. Approximately 4% of the original NB-selected candidates were detected in X-rays by Chandra, and 7% were detected in the rest-frame far-UV by GALEX. At luminosity>1.3 x 10^42 erg/s, the equivalent width distribution is unbiased and is represented by an exponential with scale-length of 83+/-10 A. Above this same luminosity threshold, we find a number density of 1.5+/-0.5 x 10^-3 Mpc^-3. Neither the number density of LAEs nor the scale-length of their EW distribution show significant evolution from z=3 to z=2. We used the rest frame UV luminosity to estimate a median star formation rate of 4 M_(sun) /yr. The median rest frame UV slope, parametrized by B-R, is that typical of dust-free, 0.5-1 Gyr old or moderately dusty, 300-500 Myr old populations. Approximately 40% of the sample occupies the z~2 star-forming galaxy locus in the UVR two color diagram. Clustering analysis reveals that LAEs at z=2.1 have r_0=4.8+/-0.9 Mpc and a bias factor b=1.8+/-0.3. This implies that z=2.1 LAEs reside in dark matter halos with median masses Log(M/M_(sun))=11.5^(+0.4)_(-0.5), which are among of the lowest-mass halos yet probed at this redshift. We used the Sheth-Tormen conditional mass function to study the descendants of these LAEs and found that their typical present-day descendants are local galaxies with L* properties, like the Milky Way.



rate research

Read More

We present a rest-frame ultraviolet morphological analysis of 108 z=2.1 Lyman Alpha Emitters (LAEs) in the Extended Chandra Deep Field South (ECDF-S) and compare it to a similar sample of 171 LAEs at z=3.1. Using Hubble Space Telescope (HST) images from the Galaxy Evolution from Morphology and SEDs survey, Great Observatories Origins Deep Survey, and Hubble Ultradeep Field, we measure size and photometric component distributions, where photometric components are defined as distinct clumps of UV-continuum emission. At both redshifts, the majority of LAEs have observed half-light radii <~ 2 kpc, but the median half-light radius rises from 1.0 kpc at z=3.1 to 1.4 kpc at z=2.1. A similar evolution is seen in the sizes of individual rest-UV components, but there is no evidence for evolution in the number of multi-component systems. In the z=2.1 sample, we see clear correlations between the size of an LAE and other physical properties derived from its SED. LAEs are found to be larger for galaxies with higher stellar mass, star formation rate, and dust obscuration, but there is no evidence for a trend between equivalent width and half-light radius at either redshift. The presence of these correlations suggests that a wide range of objects are being selected by LAE surveys at z~2, including a significant fraction of objects for which a massive and moderately extended population of old stars underlies the young starburst giving rise to the Lyman alpha emission.
We present the results of a high-spatial-resolution study of the line emission in a sample of z=3.1 Lyman-Alpha-Emitting Galaxies (LAEs) in the Extended Chandra Deep Field-South. Of the eight objects with coverage in our HST/WFPC2 narrow-band imaging, two have clear detections and an additional two are barely detected (~2-sigma). The clear detections are within ~0.5 kpc of the centroid of the corresponding rest-UV continuum source, suggesting that the line-emitting gas and young stars in LAEs are spatially coincident. The brightest object exhibits extended emission with a half-light radius of ~1.5 kpc, but a stack of the remaining LAE surface brightness profiles is consistent with the WFPC2 point spread function. This suggests that the Lyman Alpha emission in these objects originates from a compact (<~2 kpc) region and cannot be significantly more extended than the far-UV continuum emission (<~1 kpc). Comparing our WFPC2 photometry to previous ground-based measurements of their monochromatic fluxes, we find at 95% (99.7%) confidence that we cannot be missing more than 22% (32%) of the Lyman Alpha emission.
We present a sample of 33 spectroscopically confirmed z ~ 3.1 Ly$alpha$-emitting galaxies (LAEs) in the Cosmological Evolution Survey (COSMOS) field. This paper details the narrow-band survey we conducted to detect the LAE sample, the optical spectroscopy we performed to confirm the nature of these LAEs, and a new near-infrared spectroscopic detection of the [O III] 5007 AA line in one of these LAEs. This detection is in addition to two [O III] detections in two z ~ 3.1 LAEs we have reported on previously (McLinden et al 2011). The bulk of the paper then presents detailed constraints on the physical characteristics of the entire LAE sample from spectral energy distribution (SED) fitting. These characteristics include mass, age, star-formation history, dust content, and metallicity. We also detail an approach to account for nebular emission lines in the SED fitting process - wherein our models predict the strength of the [O III] line in an LAE spectrum. We are able to study the success of this prediction because we can compare the model predictions to our actual near-infrared observations both in galaxies that have [O III] detections and those that yielded non-detections. We find a median stellar mass of 6.9 $times$ 10$^8$ M$_{odot}$ and a median star formation rate weighted stellar population age of 4.5 $times$ 10$^6$ yr. In addition to SED fitting, we quantify the velocity offset between the [O III] and Ly$alpha$ lines in the galaxy with the new [O III] detection, finding that the Ly$alpha$ line is shifted 52 km s$^{-1}$ redwards of the [O III] line, which defines the systemic velocity of the galaxy.
Ly$alpha$ photons scattered by neutral hydrogen atoms in the circumgalactic media or produced in the halos of star-forming galaxies are expected to lead to extended Ly$alpha$ emission around galaxies. Such low surface brightness Ly$alpha$ halos (LAHs) have been detected by stacking Ly$alpha$ images of high-redshift star-forming galaxies. We study the origin of LAHs by performing radiative transfer modeling of nine $z=3.1$ Lyman-Alpha Emitters (LAEs) in a high resolution hydrodynamic cosmological galaxy formation simulation. We develop a method of computing the mean Ly$alpha$ surface brightness profile of each LAE by effectively integrating over many different observing directions. Without adjusting any parameters, our model yields an average Ly$alpha$ surface brightness profile in remarkable agreement with observations. We find that observed LAHs cannot be accounted for solely by photons originating from the central LAE and scattered to large radii by hydrogen atoms in the circumgalactic gas. Instead, Ly$alpha$ emission from regions in the outer halo is primarily responsible for producing the extended LAHs seen in observations, which potentially includes both star-forming and cooling radiation. With the limit on the star formation contribution set by the ultra-violet (UV) halo measurement, we find that cooling radiation can play an important role in forming the extended LAHs. We discuss the implications and caveats of such a picture.
Using the Millennium-II Simulation dark matter sub-halo merger histories, we created mock catalogs of Lyman Alpha Emitting (LAE) galaxies at z=3.1 to study the properties of their descendants. Several models were created by selecting the sub-halos to match the number density and typical dark matter mass determined from observations of these galaxies. We used mass-based and age-based selection criteria to study their effects on descendant populations at z~2, 1 and 0. For the models that best represent LAEs at z=3.1, the z=0 descendants have a median dark matter halo mass of 10^12.7 M_Sun, with a wide scatter in masses (50% between 10^11.8 and 10^13.7 M_Sun). Our study differentiated between central and satellite sub-halos and found that ~55% of z=0 descendants are central sub-halos with M_Median~10^12 M_Sun. This confirms that central z=0 descendants of z=3.1 LAEs have halo masses typical of L* type galaxies. The satellite sub-halos reside in group/cluster environments with dark matter masses around 10^14 M_Sun. The median descendant mass is robust to various methods of age determination, but it could vary by a factor of 5 due to current observational uncertainties in the clustering of LAEs used to determine their typical z=3.1 dark matter mass.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا