Do you want to publish a course? Click here

3D Spectroscopic Instrumentation

162   0   0.0 ( 0 )
 Added by Matthew Bershady
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this Chapter we review the challenges of, and opportunities for, 3D spectroscopy, and how these have lead to new and different approaches to sampling astronomical information. We describe and categorize existing instruments on 4m and 10m telescopes. Our primary focus is on grating-dispersed spectrographs. We discuss how to optimize dispersive elements, such as VPH gratings, to achieve adequate spectral resolution, high throughput, and efficient data packing to maximize spatial sampling for 3D spectroscopy. We review and compare the various coupling methods that make these spectrographs ``3D, including fibers, lenslets, slicers, and filtered multi-slits. We also describe Fabry-Perot and spatial-heterodyne interferometers, pointing out their advantages as field-widened systems relative to conventional, grating-dispersed spectrographs. We explore the parameter space all these instruments sample, highlighting regimes open for exploitation. Present instruments provide a foil for future development. We give an overview of plans for such future instruments on todays large telescopes, in space, and in the coming era of extremely large telescopes. Currently-planned instruments open new domains, but also leave significant areas of parameter space vacant, beckoning further development.



rate research

Read More

The current STELLA Echelle spectrograph (SES), which records 390nm to 870nm in one shot at a spectral resolution of 55000, will be replaced by a suite of specialized spectrographs in three spectral bands. The UV will be covered by a newly designed H&K spectrograph covering 380nm to 470nm (SES-H&K), the visual band (470nm - 690nm) will be covered by SES-VIS, which is a vacuum-stabilized spectrograph designed for high radial-velocity accuracy, and the NIR will be covered by the current SES spectrograph from 690nm to 1050nm. In order to improve the UV transmission, and to accommodate three different fibre-feeds, the prime focus corrector of the telescope will be refurbished, leading to an optical system with the f/2 1200mm spherical primary, a 4-lens collimator with 2 arcsec aperture, atmospheric dispersion corrector (ADC), and two dichroic beam splitters, feeding 3 separate fibre feeds for the three bands. The newly designed H&K spectrograph will be an Echelle spectrograph, based on a R4-grating with 41.6 l/mm and 110mmx420mm, using a f/5 camera and the cross-disperser in double pass (as in TRAFICOS, MIKE, KPF), using 21 spectral orders. The spectral resolution of all three spectrographs will be comparable to the 55000 of the current SES.
We present the status of the Dark Energy Spectroscopic Instrument (DESI) and its plans and opportunities for the coming decade. DESI construction and its initial five years of operations are an approved experiment of the US Department of Energy and is summarized here as context for the Astro2020 panel. Beyond 2025, DESI will require new funding to continue operations. We expect that DESI will remain one of the worlds best facilities for wide-field spectroscopy throughout the decade. More about the DESI instrument and survey can be found at https://www.desi.lbl.gov.
110 - S. Cavazzani , V. Zitelli 2012
In this paper we have evaluated the amount of available telescope time at four interesting sites for astronomical instrumentation. We use the GOES 12 data for the years 2008 and 2009. We use a homogeneous methodology presented in several previous papers to classify the nights as clear (completely cloud-free), mixed (partially cloud-covered), and covered. Additionally, for the clear nights, we have evaluated the amount of satellite stable nights which correspond to the amount of ground based photometric nights, and the clear nights corresponding to the spectroscopic nights. We have applied this model to two sites in the Northern Hemisphere (San Pedro Martir (SPM), Mexico; Izana, Canary Islands) and to two sites in the Southern Hemisphere (El Leoncito, Argentine; San Antonio de Los Cobres (SAC), Argentine). We have obtained, from the two years considered, a mean amount of cloud free nights of 68.6% at Izana, 76.0% at SPM, 70.6% at Leoncito and 70.0% at SAC. We have evaluated, among the cloud free nights, an amount of stable nights of 62.6% at Izana, 69.6% at SPM, 64.9% at Leoncito, and 59.7% at SAC.
The Sloan Digital Sky Survey III (SDSS-III) presents the first spectroscopic data from the Baryon Oscillation Spectroscopic Survey (BOSS). This ninth data release (DR9) of the SDSS project includes 535,995 new galaxy spectra (median z=0.52), 102,100 new quasar spectra (median z=2.32), and 90,897 new stellar spectra, along with the data presented in previous data releases. These spectra were obtained with the new BOSS spectrograph and were taken between 2009 December and 2011 July. In addition, the stellar parameters pipeline, which determines radial velocities, surface temperatures, surface gravities, and metallicities of stars, has been updated and refined with improvements in temperature estimates for stars with T_eff<5000 K and in metallicity estimates for stars with [Fe/H]>-0.5. DR9 includes new stellar parameters for all stars presented in DR8, including stars from SDSS-I and II, as well as those observed as part of the SDSS-III Sloan Extension for Galactic Understanding and Exploration-2 (SEGUE-2). The astrometry error introduced in the DR8 imaging catalogs has been corrected in the DR9 data products. The next data release for SDSS-III will be in Summer 2013, which will present the first data from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) along with another year of data from BOSS, followed by the final SDSS-III data release in December 2014.
We have built and commissioned gas absorption cells for precision spectroscopic radial velocity measurements in the near-infrared in the H and K bands. We describe the construction and installation of three such cells filled with 13CH4, 12CH3D, and 14NH3 for the CSHELL spectrograph at the NASA Infrared Telescope Facility (IRTF). We have obtained their high-resolution laboratory Fourier Transform spectra, which can have other practical uses. We summarize the practical details involved in the construction of the three cells, and the thermal and mechanical control. In all cases, the construction of the cells is very affordable. We are carrying out a pilot survey with the 13CH4 methane gas cell on the CSHELL spectrograph at the IRTF to detect exoplanets around low mass and young stars. We discuss the current status of our survey, with the aim of photon-noise limited radial velocity precision. For adequately bright targets, we are able to probe a noise floor of 7 m/s with the gas cell with CSHELL at cassegrain focus. Our results demonstrate the feasibility of using a gas cell on the next generation of near-infrared spectrographs such as iSHELL on IRTF, iGRINS, and an upgraded NIRSPEC at Keck.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا