Do you want to publish a course? Click here

Satellite characterization of four interesting sites for astronomical instrumentation

113   0   0.0 ( 0 )
 Added by Stefano Cavazzani
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper we have evaluated the amount of available telescope time at four interesting sites for astronomical instrumentation. We use the GOES 12 data for the years 2008 and 2009. We use a homogeneous methodology presented in several previous papers to classify the nights as clear (completely cloud-free), mixed (partially cloud-covered), and covered. Additionally, for the clear nights, we have evaluated the amount of satellite stable nights which correspond to the amount of ground based photometric nights, and the clear nights corresponding to the spectroscopic nights. We have applied this model to two sites in the Northern Hemisphere (San Pedro Martir (SPM), Mexico; Izana, Canary Islands) and to two sites in the Southern Hemisphere (El Leoncito, Argentine; San Antonio de Los Cobres (SAC), Argentine). We have obtained, from the two years considered, a mean amount of cloud free nights of 68.6% at Izana, 76.0% at SPM, 70.6% at Leoncito and 70.0% at SAC. We have evaluated, among the cloud free nights, an amount of stable nights of 62.6% at Izana, 69.6% at SPM, 64.9% at Leoncito, and 59.7% at SAC.



rate research

Read More

Comparing the number of clear nights (cloud free) available for astronomical observations is a critical task because it should be based on homogeneous methodologies. Current data are mainly based on different judgements based on observer logbooks or on different instruments. In this paper we present a new homogeneous methodology on very different astronomical sites for modern optical astronomy, in order to quantify the available night time fraction. The data are extracted from night time GOES12 satellite infrared images and compared with ground based conditions when available. In this analysis we introduce a wider average matrix and 3-Bands correlation in order to reduce the noise and to distinguish between clear and stable nights. Temporal data are used for the classification. In the time interval 2007-2008 we found that the percentage of the satellite clear nights is 88% at Paranal, 76% at La Silla, 72.5% at La Palma, 59% at Mt. Graham and 86.5% at Tolonchar. The correlation analysis of the three GOES12 infrared bands B3, B4 and B6 indicates that the fraction of the stable nights is lower by 2% to 20% depending on the site.
The analysis of the night cloud cover is very important for astronomical observation in real time, considering a typical observation time of about 15 minutes, and to have a statistics of the night cloud cover. In this paper we use the SQM (Sky Quality Meter) for high resolution temporal analysis of the La Silla and Asiago (Ekar observatory) sky: 3 and 5 minutes respectively. We investigate the annual temporal evolution of the natural contributions of the sky in a site not influenced by artificial light at night (ALAN) and one highly influenced respectively. We also make a correlation between GOES and AQUA satellites data and ground-based SQM data to confirm a relationship between the SQM data and cloud cover. We develop an algorithm that allows the use of the SQM for night cloud detection and we reach a correlation of 97.2% at La Silla and 94.6% at Asiago with the nighttime cloud cover detected by the GOES and AQUA satellites. Our algorithm also classifies the photometric (PN) and spectroscopic nights (SN). We measure 59.1% PN and 21.7% SN for a total percentage of clear nights of 80.8% at La Silla in 2018. The respective Ekar observatory values are 31.1% PN, 24.0% SN and 55.1% of total clear nights time. Application to the SQM network would involve the development of long-term statistics and big data forecasting models, for site testing and real-time astronomical observation.
The project Novel Astronomical Instrumentation through photonic Reformatting is a DFG-funded collaboration to exploit the recognized potential of photonics solutions for a radically new approach to astronomical instrumentation for optical/infrared high precision spectroscopy and high angular resolution imaging. We present a project overview and initial development results from our Adaptive Optics-photonic test bed, Ultrafast Laser Inscribed waveguides for interferometric beam combination and 3D printing structures for astronomical instrumentation. The project is expected to lead to important technological breakthroughs facilitating uniquely functionality and technical solutions for the next generation of instrumentation.
The Gemini Planet Imager (GPI) combines extreme adaptive optics, an integral field spectrograph, and a high performance coronagraph to directly image extrasolar planets in the near-infrared. Because the coronagraph blocks most of the light from the star, it prevents the properties of the host star from being measured directly. Instead, satellite spots, which are created by diffraction from a square grid in the pupil plane, can be used to locate the star and extract its spectrum. We describe the techniques implemented into the GPI Data Reduction Pipeline to measure the properties of the satellite spots and discuss the precision of the reconstructed astrometry and spectrophotometry of the occulted star. We find the astrometric precision of the satellite spots in an $H$-band datacube to be $0.05$ pixels and is best when individual satellite spots have a signal to noise ratio (SNR) of $> 20$. In regards to satellite spot spectrophotometry, we find that the total flux from the satellite spots is stable to $sim 7%$ and scales linearly with central star brightness and that the shape of the satellite spot spectrum varies on the $2%$ level.
The Lucy Mission accomplishes its science during a series of five flyby encounters with seven Trojan asteroid targets. This mission architecture drives a concept of operations design that maximizes science return, provides redundancy in observations where possible, features autonomous fault protection and utilizes onboard target tracking near closest approach. These design considerations reduce risk during the relatively short time-critical periods when science data is collected. The payload suite consists of a color camera and infrared imaging spectrometer, a high-resolution panchromatic imager, and a thermal infrared spectrometer. The mission design allows for concurrent observations of all instruments. Additionally, two spacecraft subsystems will also contribute to the science investigations: the Terminal Tracking Cameras will obtain wide field-of-view imaging near closest approach to determine the shape of each of the Trojan targets and the telecommunication subsystem will carry out Doppler tracking of the spacecraft to determine the mass of each of the Trojan targets.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا