Do you want to publish a course? Click here

Fast, Runaway Evaporative Cooling to Bose-Einstein Condensation in Optical Traps

204   0   0.0 ( 0 )
 Added by Cheng Chin
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We demonstrate a simple scheme to achieve fast, runaway evaporative cooling of optically trapped atoms by tilting the optical potential with a magnetic field gradient. Runaway evaporation is possible in this trap geometry due to the weak dependence of vibration frequencies on trap depth, which preserves atomic density during the evaporation process. Using this scheme, we show that Bose-Einstein condensation with ~10^5 cesium atoms can be realized in 2~4 s of forced evaporation. The evaporation speed and energetics are consistent with the three-dimensional evaporation picture, despite the fact that atoms can only leave the trap in the direction of tilt.



rate research

Read More

We report the realization of Bose-Einstein condensates of 39K atoms without the aid of an additional atomic coolant. Our route to Bose-Einstein condensation comprises Sub Doppler laser cooling of large atomic clouds with more than 10^10 atoms and evaporative cooling in optical dipole traps where the collisional cross section can be increased using magnetic Feshbach resonances. Large condensates with almost 10^6 atoms can be produced in less than 15 seconds. Our achievements eliminate the need for sympathetic cooling with Rb atoms which was the usual route implemented till date due to the unfavourable collisional property of 39K. Our findings simplify the experimental set-up for producing Bose-Einstein condensates of 39K atoms with tunable interactions, which have a wide variety of promising applications including atom-interferometry to studies on the interplay of disorder and interactions in quantum gases.
167 - Guillaume Salomon 2014
We report the all-optical production of Bose Einstein condensates (BEC) of $^{39}$K atoms. We directly load $3 times 10^{7}$ atoms in a large volume optical dipole trap from gray molasses on the D1 transition. We then apply a small magnetic quadrupole field to polarize the sample before transferring the atoms in a tightly confining optical trap. Evaporative cooling is finally performed close to a Feshbach resonance to enhance the scattering length. Our setup allows to cross the BEC threshold with $3 times 10^5$ atoms every 7s. As an illustration of the interest of the tunability of the interactions we study the expansion of Bose-Einstein condensates in the 1D to 3D crossover.
We report on the generation of a Bose-Einstein condensate in a gas of chromium atoms, which will make studies of the effects of anisotropic long-range interactions in degenerate quantum gases possible. The preparation of the chromium condensate requires novel cooling strategies that are adapted to its special electronic and magnetic properties. The final step to reach quantum degeneracy is forced evaporative cooling of 52Cr atoms within a crossed optical dipole trap. At a critical temperature of T~700nK, we observe Bose-Einstein condensation by the appearance of a two-component velocity distribution. Released from an anisotropic trap, the condensate expands with an inversion of the aspect ratio. We observe critical behavior of the condensate fraction as a function of temperature and more than 50,000 condensed 52Cr atoms.
419 - Amine Jaouadi 2009
We investigate theoretically an original route to achieve Bose-Einstein condensation using dark power-law laser traps. We propose to create such traps with two crossing blue-detuned Laguerre-Gaussian optical beams. Controlling their azimuthal order $ell$ allows for the exploration of a multitude of power-law trapping situations in one, two and three dimensions, ranging from the usual harmonic trap to an almost square-well potential, in which a quasi-homogeneous Bose gas can be formed. The usual cigar-shaped and disk-shaped Bose-Einstein condensates obtained in a 1D or 2D harmonic trap take the generic form of a finger or of a hockey puck in such Laguerre-Gaussian traps. In addition, for a fixed atom number, higher transition temperatures are obtained in such configurations when compared with a harmonic trap of same volume. This effect, which results in a substantial acceleration of the condensation dynamics, requires a better but still reasonable focusing of the Laguerre-Gaussian beams.
118 - Ran Qi , Xiao-Lu Yu , Z. B. Li 2008
We investigate the non-Abelian Josephson effect in spinor Bose-Einstein condensates with double optical traps. We propose, for the first time, a real physical system which contains non-Abelian Josephson effects. The collective modes of this weak coupling system have very different density and spin tunneling characters comparing to the Abelian case. We calculate the frequencies of the pseudo Goldstone modes in different phases between two traps respectively, which are a crucial feature of the non-Abelian Josephson effects. We also give an experimental protocol to observe this novel effect in future experiments.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا