No Arabic abstract
Transmit beamforming is a simple multi-antenna technique for increasing throughput and the transmission range of a wireless communication system. The required feedback of channel state information (CSI) can potentially result in excessive overhead especially for high mobility or many antennas. This work concerns efficient feedback for transmit beamforming and establishes a new approach of controlling feedback for maximizing net throughput, defined as throughput minus average feedback cost. The feedback controller using a stationary policy turns CSI feedback on/off according to the system state that comprises the channel state and transmit beamformer. Assuming channel isotropy and Markovity, the controllers state reduces to two scalars. This allows the optimal control policy to be efficiently computed using dynamic programming. Consider the perfect feedback channel free of error, where each feedback instant pays a fixed price. The corresponding optimal feedback control policy is proved to be of the threshold type. This result holds regardless of whether the controllers state space is discretized or continuous. Under the threshold-type policy, feedback is performed whenever a state variable indicating the accuracy of transmit CSI is below a threshold, which varies with channel power. The practical finite-rate feedback channel is also considered. The optimal policy for quantized feedback is proved to be also of the threshold type. The effect of CSI quantization is shown to be equivalent to an increment on the feedback price. Moreover, the increment is upper bounded by the expected logarithm of one minus the quantization error. Finally, simulation shows that feedback control increases net throughput of the conventional periodic feedback by up to 0.5 bit/s/Hz without requiring additional bandwidth or antennas.
Spatial interference avoidance is a simple and effective way of mitigating interference in multi-antenna wireless networks. The deployment of this technique requires channel-state information (CSI) feedback from each receiver to all interferers, resulting in substantial network overhead. To address this issue, this paper proposes the method of distributive control that intelligently allocates CSI bits over multiple feedback links and adapts feedback to channel dynamics. For symmetric channel distributions, it is optimal for each receiver to equally allocate the average sum-feedback rate for different feedback links, thereby decoupling their control. Using the criterion of minimum sum-interference power, the optimal feedback-control policy is shown using stochastic-optimization theory to exhibit opportunism. Specifically, a specific feedback link is turned on only when the corresponding transmit-CSI error is significant or interference-channel gain large, and the optimal number of feedback bits increases with this gain. For high mobility and considering the sphere-cap-quantized-CSI model, the optimal feedback-control policy is shown to perform water-filling in time, where the number of feedback bits increases logarithmically with the corresponding interference-channel gain. Furthermore, we consider asymmetric channel distributions with heterogeneous path losses and high mobility, and prove the existence of a unique optimal policy for jointly controlling multiple feedback links. Given the sphere-cap-quantized-CSI model, this policy is shown to perform water-filling over feedback links. Finally, simulation demonstrates that feedback-control yields significant throughput gains compared with the conventional differential-feedback method.
We consider a downlink cellular network where multi-antenna base stations (BSs) transmit data to single-antenna users by using one of two linear precoding methods with limited feedback: (i) maximum ratio transmission (MRT) for serving a single user or (ii) zero forcing (ZF) for serving multiple users. The BS and user locations are drawn from a Poisson point process, allowing expressions for the signal- to-interference coverage probability and the ergodic spectral efficiency to be derived as a function of system parameters such as the number of BS antennas and feedback bits, and the pathloss exponent. We find a tight lower bound on the optimum number of feedback bits to maximize the net spectral efficiency, which captures the overall system gain by considering both of downlink and uplink spectral efficiency using limited feedback. Our main finding is that, when using MRT, the optimum number of feedback bits scales linearly with the number of antennas, and logarithmically with the channel coherence time. When using ZF, the feedback scales in the same ways as MRT, but also linearly with the pathloss exponent. The derived results provide system-level insights into the preferred channel codebook size by averaging the effects of short-term fading and long-term pathloss.
We characterize the ergodic spectral efficiency of a non-cooperative and a cooperative type of K-tier heterogeneous networks with limited feedback. In the non-cooperative case, a multi-antenna base station (BS) serves a single-antenna user using maximum-ratio transmission based on limited feedback. In the cooperative case, a BS coordination set is formed by using dynamic clustering across the tiers, wherein the intra-cluster interference is mitigated by using multi-cell zero-forcing also based on limited feedback. Modeling the network based on stochastic geometry, we derive analytical expressions for the ergodic spectral efficiency as a function of the system parameters. Leveraging the obtained expressions, we formulate feedback partition problems and obtain solutions to improve the ergodic spectral efficiency. Simulations show the spectral efficiency improvement by using the obtained feedback partitions. Our major findings are as follows: 1) In the non-cooperative case, the feedback is only useful in a particular tier if the mean interference is small enough. 2) In the cooperative case, allocating more feedback to stronger intra-cluster BSs is efficient. 3) In both cases, the obtained solutions do not change depending on instantaneous signal-to-interference ratio.
We consider the problem of quantifying the Pareto optimal boundary in the achievable rate region over multiple-input single-output (MISO) interference channels, where the problem boils down to solving a sequence of convex feasibility problems after certain transformations. The feasibility problem is solved by two new distributed optimal beamforming algorithms, where the first one is to parallelize the computation based on the method of alternating projections, and the second one is to localize the computation based on the method of cyclic projections. Convergence proofs are established for both algorithms.
Radio frequency (RF) wireless energy transfer (WET) is a key technology that may allow seamlessly powering future massive low-energy Internet of Things (IoT) networks. To enable efficient massive WET, channel state information (CSI)-limited/free multi-antenna transmit schemes have been recently proposed in the literature. The idea is to reduce/null the energy costs to be paid by energy harvesting (EH) IoT nodes from participating in large-scale time/power-consuming CSI training, but still enable some transmit spatial gains. In this paper, we take another step forward by proposing a novel CSI-free rotary antenna beamforming (RAB) WET scheme that outperforms all state-of-the-art CSI-free schemes in a scenario where a power beacon (PB) equipped with a uniform linear array (ULA) powers a large set of surrounding EH IoT devices. RAB uses a properly designed CSI-free beamformer combined with a continuous or periodic rotation of the ULA at the PB to provide average EH gains that scale as $0.85sqrt{M}$, where $M$ is the number of PBs antenna elements. Moreover, a rotation-specific power control mechanism was proposed to i) fairly optimize the WET process if devices positioning information is available, and/or ii) to avoid hazards to human health in terms of specific absorption rate (SAR). We show that RAB performance even approaches quickly (or surpasses, for scenarios with sufficiently large number of EH devices, or when using the proposed power control) the performance of a traditional full-CSI based transmit scheme, and it is also less sensitive to SAR constraints. Finally, we discuss important practicalities related to RAB such as its robustness against non line-of-sight conditions compared to other CSI-free WET schemes, and its generalizability to scenarios where the PB uses other than a ULA topology.