No Arabic abstract
We consider the problem of quantifying the Pareto optimal boundary in the achievable rate region over multiple-input single-output (MISO) interference channels, where the problem boils down to solving a sequence of convex feasibility problems after certain transformations. The feasibility problem is solved by two new distributed optimal beamforming algorithms, where the first one is to parallelize the computation based on the method of alternating projections, and the second one is to localize the computation based on the method of cyclic projections. Convergence proofs are established for both algorithms.
Beamforming is an effective means to improve the quality of the received signals in multiuser multiple-input-single-output (MISO) systems. Traditionally, finding the optimal beamforming solution relies on iterative algorithms, which introduces high computational delay and is thus not suitable for real-time implementation. In this paper, we propose a deep learning framework for the optimization of downlink beamforming. In particular, the solution is obtained based on convolutional neural networks and exploitation of expert knowledge, such as the uplink-downlink duality and the known structure of optimal solutions. Using this framework, we construct three beamforming neural networks (BNNs) for three typical optimization problems, i.e., the signal-to-interference-plus-noise ratio (SINR) balancing problem, the power minimization problem, and the sum rate maximization problem. For the former two problems the BNNs adopt the supervised learning approach, while for the sum rate maximization problem a hybrid method of supervised and unsupervised learning is employed. Simulation results show that the BNNs can achieve near-optimal solutions to the SINR balancing and power minimization problems, and a performance close to that of the weighted minimum mean squared error algorithm for the sum rate maximization problem, while in all cases enjoy significantly reduced computational complexity. In summary, this work paves the way for fast realization of optimal beamforming in multiuser MISO systems.
In this paper, we consider multiuser multiple-input single-output (MISO) interference channel where the received signal is divided into two parts for information decoding and energy harvesting (EH), respectively. The transmit beamforming vectors and receive power splitting (PS) ratios are jointly designed in order to minimize the total transmission power subject to both signal-to-interference-plus-noise ratio (SINR) and EH constraints. Most joint beamforming and power splitting (JBPS) designs assume that perfect channel state information (CSI) is available; however CSI errors are inevitable in practice. To overcome this limitation, we study the robust JBPS design problem assuming a norm-bounded error (NBE) model for the CSI. Three different solution approaches are proposed for the robust JBPS problem, each one leading to a different computational algorithm. Firstly, an efficient semidefinite relaxation (SDR)-based approach is presented to solve the highly non-convex JBPS problem, where the latter can be formulated as a semidefinite programming (SDP) problem. A rank-one recovery method is provided to recover a robust feasible solution to the original problem. Secondly, based on second order cone programming (SOCP) relaxation, we propose a low complexity approach with the aid of a closed-form robust solution recovery method. Thirdly, a new iterative method is also provided which can achieve near-optimal performance when the SDR-based algorithm results in a higher-rank solution. We prove that this iterative algorithm monotonically converges to a Karush-Kuhn-Tucker (KKT) solution of the robust JBPS problem. Finally, simulation results are presented to validate the robustness and efficiency of the proposed algorithms.
This paper investigates the optimal transmit beamforming design of simultaneous wireless information and power transfer (SWIPT) in the multiuser multiple-input-single-output (MISO) downlink with specific absorption rate (SAR) constraints. We consider the power splitting technique for SWIPT, where each receiver divides the received signal into two parts: one for information decoding and the other for energy harvesting with a practical non-linear rectification model. The problem of interest is to maximize as much as possible the received signal-to-interference-plus-noise ratio (SINR) and the energy harvested for all receivers, while satisfying the transmit power and the SAR constraints by optimizing the transmit beamforming at the transmitter and the power splitting ratios at different receivers. The optimal beamforming and power splitting solutions are obtained with the aid of semidefinite programming and bisection search. Low-complexity fixed beamforming and hybrid beamforming techniques are also studied. Furthermore, we study the effect of imperfect channel information and radiation matrices, and design robust beamforming to guarantee the worst-case performance. Simulation results demonstrate that our proposed algorithms can effectively deal with the radio exposure constraints and significantly outperform the conventional transmission scheme with power backoff.
In this paper, we analyze the operational information rate distortion function (RDF) ${R}_{S;Z|Y}(Delta_X)$, introduced by Draper and Wornell, for a triple of jointly independent and identically distributed, multivariate Gaussian random variables (RVs), $(X^n, S^n, Y^n)= {(X_{t}, S_t, Y_{t}): t=1,2, ldots,n}$, where $X^n$ is the source, $S^n$ is a measurement of $X^n$, available to the encoder, $Y^n$ is side information available to the decoder only, $Z^n$ is the auxiliary RV available to the decoder, with respect to the square-error fidelity, between the source $X^n$ and its reconstruction $widehat{X}^n$. We also analyze the RDF ${R}_{S;widehat{X}|Y}(Delta_X)$ that corresponds to the above set up, when side information $Y^n$ is available to the encoder and decoder. The main results include, (1) Structural properties of test channel realizations that induce distributions, which achieve the two RDFs, (2) Water-filling solutions of the two RDFs, based on parallel channel realizations of test channels, (3) A proof of equality ${R}_{S;Z|Y}(Delta_X) = {R}_{S;widehat{X}|Y}(Delta_X)$, i.e., side information $Y^n$ at both the encoder and decoder does not incur smaller compression, and (4) Relations to other RDFs, as degenerate cases, which show past literature, contain oversights related to the optimal test channel realizations and value of the RDF ${R}_{S;Z|Y}(Delta_X)$.
A simple method is proposed for use in a scenario involving a single-antenna source node communicating with a destination node that is equipped with two antennas via multiple single-antenna relay nodes, where each relay is subject to an individual power constraint. Furthermore, ultra-reliable and low-latency communication are desired. The latter requirement translates to considering only schemes that make use of local channel state information. Whereas for a receiver equipped with a single antenna, distributed beamforming is a well known and adequate solution, no straightforward extension is known. In this paper, a scheme is proposed based on a space-time diversity transformation that is applied as a front-end operation at the destination node. This results in an effective unitary channel matrix replacing the scalar coefficient corresponding to each user. Each relay node then inverts its associated channel matrix, which is the generalization of undoing the channel phase in the classical case of distributed beamforming to a single-antenna receiver, and then repeats the message over the resulting gain-only channel. In comparison to a single-antenna destination node, the method doubles the diversity order without requiring any channel state information at the receiver while at the same time retaining the array gain offered by the relays.