Do you want to publish a course? Click here

Sound propagation in a Bose-Einstein condensate at finite temperatures

106   0   0.0 ( 0 )
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the propagation of a density wave in a magnetically trapped Bose-Einstein condensate at finite temperatures. The thermal cloud is in the hydrodynamic regime and the system is therefore described by the two-fluid model. A phase-contrast imaging technique is used to image the cloud of atoms and allows us to observe small density excitations. The propagation of the density wave in the condensate is used to determine the speed of sound as a function of the temperature. We find the speed of sound to be in good agreement with calculations based on the Landau two-fluid model.



rate research

Read More

Bose-Einstein condensation (BEC) is a quantum mechanical phenomenon directly linked to the quantum statistics of bosons. While cold atomic gases provide a new arena for exploring the nature of BEC, a long-term quest to confirm BEC of excitons, quasi-Bose particles formed as a bound state of an electron-hole pair, has been underway since its theoretical prediction in the 1960s. Ensembles of electrons and holes are complex quantum systems with strong Coulomb correlations; thus, it is non-trivial whether nature chooses a form of exciton BEC. Various systems have been examined in bulk and two-dimensional semiconductors and also exciton-photon hybrid systems. Among them, the 1s paraexciton state in a single crystal of Cu2O has been a prime candidate for realizing three-dimensional BEC. The large binding energy and long lifetime enable preparation of cold excitons in thermal equilibrium with the lattice and decoupled from the radiation field. However, collisional loss severely limits the conditions for reaching BEC. Such a system with a large inelastic cross section is excluded in atomic BEC experiments, where a small inelastic scattering rate and efficient elastic scattering are necessary for evaporative cooling. Here we demonstrate that it is nevertheless possible to achieve BEC by cooling paraexcitons to sub-Kelvin temperatures in a cold phonon bath. Emission spectra from paraexcitons in a three-dimensional trap show an anomalous distribution in a threshold-like manner at the critical number of BEC expected for ideal bosons. Bosonic stimulated scattering into the condensate and collisional loss compete and limit the condensate to a fraction of about 1%. This observation adds a new class of experimentally accessible BEC for exploring a rich variety of matter phases of electron-hole ensembles.
Mobile impurities in a Bose-Einstein condensate form quasiparticles called polarons. Here, we show that two such polarons can bind to form a bound bipolaron state. Its emergence is caused by an induced nonlocal interaction mediated by density oscillations in the condensate, and we derive using field theory an effective Schrodinger equation describing this for arbitrarily strong impurity-boson interaction. We furthermore compare with Quantum Monte Carlo simulations finding remarkable agreement, which underlines the predictive power of the developed theory. It is found that bipolaron formation typically requires strong impurity interactions beyond the validity of more commonly used weak-coupling approaches that lead to local Yukawa-type interactions. We predict that the bipolarons are observable in present experiments and describe a procedure to probe their properties.
We perform finite-temperature dynamical simulations of the arrest of a rotating Bose-Einstein condensate by a fixed trap anisotropy, using a Hamiltonian classical-field method. We consider a quasi-two-dimensional condensate containing a single vortex in equilibrium with a rotating thermal cloud. Introducing an elliptical deformation of the trapping potential leads to the loss of angular momentum from the system. We identify the condensate and the complementary thermal component of the nonequilibrium field, and compare the evolution of their angular momenta and angular velocities. By varying the trap anisotropy we alter the relative efficiencies of the vortex-cloud and cloud-trap coupling. For strong trap anisotropies the angular momentum of the thermal cloud may be entirely depleted before the vortex begins to decay. For weak trap anisotropies, the thermal cloud exhibits a long-lived steady state in which it rotates at an intermediate angular velocity.
We experimentally and theoretically investigate the lowest-lying axial excitation of an atomic Bose-Einstein condensate in a cylindrical box trap. By tuning the atomic density, we observe how the nature of the mode changes from a single-particle excitation (in the low-density limit) to a sound wave (in the high-density limit). Throughout this crossover the measured mode frequency agrees with Bogoliubov theory. Using approximate low-energy models we show that the evolution of the mode frequency is directly related to the interaction-induced shape changes of the condensate and the excitation. Finally, if we create a large-amplitude excitation, and then let the system evolve freely, we observe that the mode amplitude decays non-exponentially in time; this nonlinear behaviour is indicative of interactions between the elementary excitations, but remains to be quantitatively understood.
The presence of strong interactions in a many-body quantum system can lead to a variety of exotic effects. Here we show that even in a comparatively simple setup consisting of a charged impurity in a weakly interacting bosonic medium the competition of length scales gives rise to a highly correlated mesoscopic state. Using quantum Monte Carlo simulations, we unravel its vastly different polaronic properties compared to neutral quantum impurities. Moreover, we identify a transition between the regime amenable to conventional perturbative treatment in the limit of weak atom-ion interactions and a many-body bound state with vanishing quasi-particle residue composed of hundreds of atoms. In order to analyze the structure of the corresponding states we examine the atom-ion and atom-atom correlation functions which both show nontrivial properties. Our findings are directly relevant to experiments using hybrid atom-ion setups that have recently attained the ultracold regime.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا