No Arabic abstract
We perform finite-temperature dynamical simulations of the arrest of a rotating Bose-Einstein condensate by a fixed trap anisotropy, using a Hamiltonian classical-field method. We consider a quasi-two-dimensional condensate containing a single vortex in equilibrium with a rotating thermal cloud. Introducing an elliptical deformation of the trapping potential leads to the loss of angular momentum from the system. We identify the condensate and the complementary thermal component of the nonequilibrium field, and compare the evolution of their angular momenta and angular velocities. By varying the trap anisotropy we alter the relative efficiencies of the vortex-cloud and cloud-trap coupling. For strong trap anisotropies the angular momentum of the thermal cloud may be entirely depleted before the vortex begins to decay. For weak trap anisotropies, the thermal cloud exhibits a long-lived steady state in which it rotates at an intermediate angular velocity.
We consider a finite-temperature Bose-Einstein condensate in a quasi-two-dimensional trap containing a single precessing vortex. We find that such a configuration arises naturally as an ergodic equilibrium of the projected Gross-Pitaevskii equation, when constrained to a finite conserved angular momentum. In an isotropic trapping potential the condensation of the classical field into an off-axis vortex state breaks the rotational symmetry of the system. We present a methodology to identify the condensate and the Goldstone mode associated with the broken rotational symmetry in the classical-field model. We also examine the variation in vortex trajectories and thermodynamic parameters of the field as the energy of the microcanonical field simulation is varied.
We theoretically show that the topology of a non-simply-connected annular atomic Bose-Einstein condensate enforces the inner surface waves to be always excited with outer surface excitations and that the inner surface modes are associated with induced vortex dipoles unlike the surface waves of a simply-connected one with vortex monopoles. Consequently, under stirring to drive an inner surface wave, a peculiar population oscillation between the inner and outer surface is generated regardless of annulus thickness. Moreover, a new vortex nucleation process by stirring is observed that can merge the inner vortex dipoles and outer vortex into a single vortex inside the annulus. The energy spectrum for a rotating annular condensate with a vortex at the center also reveals the distinct connection of the Tkachenko modes of a vortex lattice to its inner surface excitations.
We study the real-time dynamics of vortex lines in a large elongated Bose-Einstein condensate (BEC) of sodium atoms using a stroboscopic technique. Vortices are spontaneously produced via the Kibble-Zurek mechanism in a quench across the BEC transition and then they slowly precess keeping their orientation perpendicular to the long axis of the trap as expected for solitonic vortices in a highly anisotropic condensate. Good agreement with theoretical predictions is found for the precession period as a function of the orbit amplitude and the number of condensed atoms. In configurations with two or more vortex lines, we see signatures of vortex-vortex interaction in the shape and visibility of the orbits. In addition, when more than two vortices are present, their decay is faster than the thermal decay observed for one or two vortices. The possible role of vortex reconnection processes is discussed.
Understanding quantum dynamics in a two-dimensional Bose-Einstein condensate (BEC) relies on understanding how vortices interact with each others microscopically and with local imperfections of the potential which confines the condensate. Within a system consisting of many vortices, the trajectory of a vortex-antivortex pair is often scattered by a third vortex, an effect previously characterised. However, the natural question remains as to how much of this effect is due to the velocity induced by this third vortex and how much is due to the density inhomogeneity which it introduces. In this work, we describe the various qualitative scenarios which occur when a vortex-antivortex pair interacts with a smooth density impurity whose profile is identical to that of a vortex but lacks the circulation around it.
In this work we present numerical study of a trapped Bose-Einstein condensate perturbed by an alternating potential. The relevant physical situation has been recently realized in experiment, where the trapped condensate of $^{87}$Rb, being strongly perturbed, exhibits the set of spatial structures. Firstly, regular vortices are detected. Further, increasing either the excitation amplitude or modulation time results in the transition to quantum vortex turbulence, followed by a granular state. Numerical simulation of the nonequilibrium Bose-condensed system is based on the solution of the time-dependent 3D nonlinear Schr{o}dinger equation within the static and dynamical algorithms. The damped gradient step and time split-step Fourier transform methods are employed. We demonstrate that computer simulations qualitatively reproduce the experimental picture, and describe well the main experimental observables.