Do you want to publish a course? Click here

Transition to a Bose-Einstein condensate of excitons at sub-Kelvin temperatures

100   0   0.0 ( 0 )
 Added by Kosuke Yoshioka
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

Bose-Einstein condensation (BEC) is a quantum mechanical phenomenon directly linked to the quantum statistics of bosons. While cold atomic gases provide a new arena for exploring the nature of BEC, a long-term quest to confirm BEC of excitons, quasi-Bose particles formed as a bound state of an electron-hole pair, has been underway since its theoretical prediction in the 1960s. Ensembles of electrons and holes are complex quantum systems with strong Coulomb correlations; thus, it is non-trivial whether nature chooses a form of exciton BEC. Various systems have been examined in bulk and two-dimensional semiconductors and also exciton-photon hybrid systems. Among them, the 1s paraexciton state in a single crystal of Cu2O has been a prime candidate for realizing three-dimensional BEC. The large binding energy and long lifetime enable preparation of cold excitons in thermal equilibrium with the lattice and decoupled from the radiation field. However, collisional loss severely limits the conditions for reaching BEC. Such a system with a large inelastic cross section is excluded in atomic BEC experiments, where a small inelastic scattering rate and efficient elastic scattering are necessary for evaporative cooling. Here we demonstrate that it is nevertheless possible to achieve BEC by cooling paraexcitons to sub-Kelvin temperatures in a cold phonon bath. Emission spectra from paraexcitons in a three-dimensional trap show an anomalous distribution in a threshold-like manner at the critical number of BEC expected for ideal bosons. Bosonic stimulated scattering into the condensate and collisional loss compete and limit the condensate to a fraction of about 1%. This observation adds a new class of experimentally accessible BEC for exploring a rich variety of matter phases of electron-hole ensembles.



rate research

Read More

120 - R. Meppelink , S.B. Koller , 2009
We study the propagation of a density wave in a magnetically trapped Bose-Einstein condensate at finite temperatures. The thermal cloud is in the hydrodynamic regime and the system is therefore described by the two-fluid model. A phase-contrast imaging technique is used to image the cloud of atoms and allows us to observe small density excitations. The propagation of the density wave in the condensate is used to determine the speed of sound as a function of the temperature. We find the speed of sound to be in good agreement with calculations based on the Landau two-fluid model.
We investigate the elastic scattering of Bose-Einstein condensates at shallow periodic and disorder potentials. We show that the collective scattering of the macroscopic quantum object couples to internal degrees of freedom of the Bose-Einstein condensate such that the Bose-Einstein condensate gets depleted. As a precursor for the excitation of the Bose-Einstein condensate we observe wave chaos within a mean-field theory.
We have studied a Bose-Einstein condensate of $^{87}Rb$ atoms under an oscillatory excitation. For a fixed frequency of excitation, we have explored how the values of amplitude and time of excitation must be combined in order to produce quantum turbulence in the condensate. Depending on the combination of these parameters different behaviors are observed in the sample. For the lowest values of time and amplitude of excitation, we observe a bending of the main axis of the cloud. Increasing the amplitude of excitation we observe an increasing number of vortices. The vortex state can evolve into the turbulent regime if the parameters of excitation are driven up to a certain set of combinations. If the value of the parameters of these combinations is exceeded, all vorticity disappears and the condensate enters into a different regime which we have identified as the granular phase. Our results are summarized in a diagram of amplitude versus time of excitation in which the different structures can be identified. We also present numerical simulations of the Gross-Pitaevskii equation which support our observations.
Mobile impurities in a Bose-Einstein condensate form quasiparticles called polarons. Here, we show that two such polarons can bind to form a bound bipolaron state. Its emergence is caused by an induced nonlocal interaction mediated by density oscillations in the condensate, and we derive using field theory an effective Schrodinger equation describing this for arbitrarily strong impurity-boson interaction. We furthermore compare with Quantum Monte Carlo simulations finding remarkable agreement, which underlines the predictive power of the developed theory. It is found that bipolaron formation typically requires strong impurity interactions beyond the validity of more commonly used weak-coupling approaches that lead to local Yukawa-type interactions. We predict that the bipolarons are observable in present experiments and describe a procedure to probe their properties.
132 - Ofir E. Alon 2018
The ground state of a Bose-Einstein condensate in a two-dimensional trap potential is analyzed numerically at the infinite-particle limit. It is shown that the anisotropy of the many-particle position variance along the $x$ and $y$ axes can be opposite when computed at the many-body and mean-field levels of theory. This is despite the system being $100%$ condensed, and the respective energies per particle and densities per particle to coincide.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا