No Arabic abstract
We present two universal models of quantum computation with a time-independent, frustration-free Hamiltonian. The first construction uses 3-local (qubit) projectors, and the second one requires only 2-local qubit-qutrit projectors. We build on Feynmans Hamiltonian computer idea and use a railroad-switch type clock register. The resources required to simulate a quantum circuit with L gates in this model are O(L) small-dimensional quantum systems (qubits or qutrits), a time-independent Hamiltonian composed of O(L) local, constant norm, projector terms, the possibility to prepare computational basis product states, a running time O(L log^2 L), and the possibility to measure a few qubits in the computational basis. Our models also give a simplified proof of the universality of 3-local Adiabatic Quantum Computation.
In this thesis, I investigate aspects of local Hamiltonians in quantum computing. First, I focus on the Adiabatic Quantum Computing model, based on evolution with a time dependent Hamiltonian. I show that to succeed using AQC, the Hamiltonian involved must have local structure, which leads to a result about eigenvalue gaps from information theory. I also improve results about simulating quantum circuits with AQC. Second, I look at classically simulating time evolution with local Hamiltonians and finding their ground state properties. I give a numerical method for finding the ground state of translationally invariant Hamiltonians on an infinite tree. This method is based on imaginary time evolution within the Matrix Product State ansatz, and uses a new method for bringing the state back to the ansatz after each imaginary time step. I then use it to investigate the phase transition in the transverse field Ising model on the Bethe lattice. Third, I focus on locally constrained quantum problems Local Hamiltonian and Quantum Satisfiability and prove several new results about their complexity. Finally, I define a Hamiltonian Quantum Cellular Automaton, a continuous-time model of computation which doesnt require control during the computation process, only preparation of product initial states. I construct two of these, showing that time evolution with a simple, local, translationally invariant and time-independent Hamiltonian can be used to simulate quantum circuits.
We show that braidings of the metaplectic anyons $X_epsilon$ in $SO(3)_2=SU(2)_4$ with their total charge equal to the metaplectic mode $Y$ supplemented with measurements of the total charge of two metaplectic anyons are universal for quantum computation. We conjecture that similar universal computing models can be constructed for all metaplectic anyon systems $SO(p)_2$ for any odd prime $pgeq 5$. In order to prove universality, we find new conceptually appealing universal gate sets for qutrits and qupits.
Harnessing non-abelian statistics of anyons to perform quantum computational tasks is getting closer to reality. While the existence of universal anyons by braiding alone such as the Fibonacci anyon is theoretically a possibility, accessible anyons with current technology all belong to a class that is called weakly integral---anyons whose squared quantum dimensions are integers. We analyze the computational power of the first non-abelian anyon system with only integral quantum dimensions---$D(S_3)$, the quantum double of $S_3$. Since all anyons in $D(S_3)$ have finite images of braid group representations, they cannot be universal for quantum computation by braiding alone. Based on our knowledge of the images of the braid group representations, we set up three qutrit computational models. Supplementing braidings with some measurements and ancillary states, we find a universal gate set for each model.
It has recently been shown that a parametrically driven oscillator with Kerr nonlinearity yields a Schrodinger cat state via quantum adiabatic evolution through its bifurcation point and a network of such nonlinear oscillators can be used for solving combinatorial optimization problems by bifurcation-based adiabatic quantum computation [H. Goto, Sci. Rep. textbf{6}, 21686 (2016)]. Here we theoretically show that such a nonlinear oscillator network with controllable parameters can also be used for universal quantum computation. The initialization is achieved by a quantum-mechanical bifurcation based on quantum adiabatic evolution, which yields a Schrodinger cat state. All the elementary quantum gates are also achieved by quantum adiabatic evolution, in which dynamical phases accompanying the adiabatic evolutions are controlled by the system parameters. Numerical simulation results indicate that high gate fidelities can be achieved, where no dissipation is assumed.
We describe a generalization of the cluster-state model of quantum computation to continuous-variable systems, along with a proposal for an optical implementation using squeezed-light sources, linear optics, and homodyne detection. For universal quantum computation, a nonlinear element is required. This can be satisfied by adding to the toolbox any single-mode non-Gaussian measurement, while the initial cluster state itself remains Gaussian. Homodyne detection alone suffices to perform an arbitrary multi-mode Gaussian transformation via the cluster state. We also propose an experiment to demonstrate cluster-based error reduction when implementing Gaussian operations.