Do you want to publish a course? Click here

Universal quantum computation with a nonlinear oscillator network

62   0   0.0 ( 0 )
 Added by Hayato Goto
 Publication date 2016
  fields Physics
and research's language is English
 Authors Hayato Goto




Ask ChatGPT about the research

It has recently been shown that a parametrically driven oscillator with Kerr nonlinearity yields a Schrodinger cat state via quantum adiabatic evolution through its bifurcation point and a network of such nonlinear oscillators can be used for solving combinatorial optimization problems by bifurcation-based adiabatic quantum computation [H. Goto, Sci. Rep. textbf{6}, 21686 (2016)]. Here we theoretically show that such a nonlinear oscillator network with controllable parameters can also be used for universal quantum computation. The initialization is achieved by a quantum-mechanical bifurcation based on quantum adiabatic evolution, which yields a Schrodinger cat state. All the elementary quantum gates are also achieved by quantum adiabatic evolution, in which dynamical phases accompanying the adiabatic evolutions are controlled by the system parameters. Numerical simulation results indicate that high gate fidelities can be achieved, where no dissipation is assumed.



rate research

Read More

204 - Hayato Goto 2015
The dynamics of nonlinear systems qualitatively change depending on their parameters, which is called bifurcation. A quantum-mechanical nonlinear oscillator can yield a quantum superposition of two oscillation states, known as a Schrodinger cat state, via quantum adiabatic evolution through its bifurcation point. Here we propose a quantum computer comprising such quantum nonlinear oscillators, instead of quantum bits, to solve hard combinatorial optimization problems. The nonlinear oscillator network finds optimal solutions via quantum adiabatic evolution, where nonlinear terms are increased slowly, in contrast to conventional adiabatic quantum computation or quantum annealing, where quantum fluctuation terms are decreased slowly. As a result of numerical simulations, it is concluded that quantum superposition and quantum fluctuation work effectively to find optimal solutions. It is also notable that the present computer is analogous to neural computers, which are also networks of nonlinear components. Thus, the present scheme will open new possibilities for quantum computation, nonlinear science, and artificial intelligence.
Realizing the promise of quantum information processing remains a daunting task, given the omnipresence of noise and error. Adapting noise-resilient classical computing modalities to quantum mechanics may be a viable path towards near-term applications in the noisy intermediate-scale quantum era. Here, we propose continuous variable quantum reservoir computing in a single nonlinear oscillator. Through numerical simulation of our model we demonstrate quantum-classical performance improvement, and identify its likely source: the nonlinearity of quantum measurement. Beyond quantum reservoir computing, this result may impact the interpretation of results across quantum machine learning. We study how the performance of our quantum reservoir depends on Hilbert space dimension, how it is impacted by injected noise, and briefly comment on its experimental implementation. Our results show that quantum reservoir computing in a single nonlinear oscillator is an attractive modality for quantum computing on near-term hardware.
We show that braidings of the metaplectic anyons $X_epsilon$ in $SO(3)_2=SU(2)_4$ with their total charge equal to the metaplectic mode $Y$ supplemented with measurements of the total charge of two metaplectic anyons are universal for quantum computation. We conjecture that similar universal computing models can be constructed for all metaplectic anyon systems $SO(p)_2$ for any odd prime $pgeq 5$. In order to prove universality, we find new conceptually appealing universal gate sets for qutrits and qupits.
Harnessing non-abelian statistics of anyons to perform quantum computational tasks is getting closer to reality. While the existence of universal anyons by braiding alone such as the Fibonacci anyon is theoretically a possibility, accessible anyons with current technology all belong to a class that is called weakly integral---anyons whose squared quantum dimensions are integers. We analyze the computational power of the first non-abelian anyon system with only integral quantum dimensions---$D(S_3)$, the quantum double of $S_3$. Since all anyons in $D(S_3)$ have finite images of braid group representations, they cannot be universal for quantum computation by braiding alone. Based on our knowledge of the images of the braid group representations, we set up three qutrit computational models. Supplementing braidings with some measurements and ancillary states, we find a universal gate set for each model.
In blind quantum computation (BQC), a client delegates her quantum computation to a server with universal quantum computers who learns nothing about the clients private information. In measurement-based BQC model, entangled states are generally used to realize quantum computing. However, to generate a large-scale entangled state in experiment becomes a challenge issue. In circuit-based BQC model, single-qubit gates can be realized precisely, but entangled gates are probabilistically successful. This remains a challenge to realize entangled gates with a deterministic method in some systems. To solve above two problems, we propose the first hybrid universal BQC protocol based on measurements and circuits, where the client prepares single-qubit states and the server performs universal quantum computing. We analyze and prove the correctness, blindness and verifiability of the proposed protocol.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا