Do you want to publish a course? Click here

Regularized adaptive long autoregressive spectral analysis

257   0   0.0 ( 0 )
 Publication date 2009
and research's language is English




Ask ChatGPT about the research

This paper is devoted to adaptive long autoregressive spectral analysis when (i) very few data are available, (ii) information does exist beforehand concerning the spectral smoothness and time continuity of the analyzed signals. The contribution is founded on two papers by Kitagawa and Gersch. The first one deals with spectral smoothness, in the regularization framework, while the second one is devoted to time continuity, in the Kalman formalism. The present paper proposes an original synthesis of the two contributions: a new regularized criterion is introduced that takes both information into account. The criterion is efficiently optimized by a Kalman smoother. One of the major features of the method is that it is entirely unsupervised: the problem of automatically adjusting the hyperparameters that balance data-based versus prior-based information is solved by maximum likelihood. The improvement is quantified in the field of meteorological radar.



rate research

Read More

Conditional autoregressive (CAR) models are commonly used to capture spatial correlation in areal unit data, and are typically specified as a prior distribution for a set of random effects, as part of a hierarchical Bayesian model. The spatial correlation structure induced by these models is determined by geographical adjacency, so that two areas have correlated random effects if they share a common border. However, this correlation structure is too simplistic for real data, which are instead likely to include sub-regions of strong correlation as well as locations at which the response exhibits a step-change. Therefore this paper proposes an extension to CAR priors, which can capture such localised spatial correlation. The proposed approach takes the form of an iterative algorithm, which sequentially updates the spatial correlation structure in the data as well as estimating the remaining model parameters. The efficacy of the approach is assessed by simulation, and its utility is illustrated in a disease mapping context, using data on respiratory disease risk in Greater Glasgow, Scotland.
Group therapy is a central treatment modality for behavioral health disorders such as alcohol and other drug use (AOD) and depression. Group therapy is often delivered under a rolling (or open) admissions policy, where new clients are continuously enrolled into a group as space permits. Rolling admissions policies result in a complex correlation structure among client outcomes. Despite the ubiquity of rolling admissions in practice, little guidance on the analysis of such data is available. We discuss the limitations of previously proposed approaches in the context of a study that delivered group cognitive behavioral therapy for depression to clients in residential substance abuse treatment. We improve upon previous rolling group analytic approaches by fully modeling the interrelatedness of client depressive symptom scores using a hierarchical Bayesian model that assumes a conditionally autoregressive prior for session-level random effects. We demonstrate improved performance using our method for estimating the variance of model parameters and the enhanced ability to learn about the complex correlation structure among participants in rolling therapy groups. Our approach broadly applies to any group therapy setting where groups have changing client composition. It will lead to more efficient analyses of client-level data and improve the group therapy research communitys ability to understand how the dynamics of rolling groups lead to client outcomes.
Functional neuroimaging measures how the brain responds to complex stimuli. However, sample sizes are modest, noise is substantial, and stimuli are high dimensional. Hence, direct estimates are inherently imprecise and call for regularization. We compare a suite of approaches which regularize via shrinkage: ridge regression, the elastic net (a generalization of ridge regression and the lasso), and a hierarchical Bayesian model based on small area estimation (SAE). We contrast regularization with spatial smoothing and combinations of smoothing and shrinkage. All methods are tested on functional magnetic resonance imaging (fMRI) data from multiple subjects participating in two different experiments related to reading, for both predicting neural response to stimuli and decoding stimuli from responses. Interestingly, when the regularization parameters are chosen by cross-validation independently for every voxel, low/high regularization is chosen in voxels where the classification accuracy is high/low, indicating that the regularization intensity is a good tool for identification of relevant voxels for the cognitive task. Surprisingly, all the regularization methods work about equally well, suggesting that beating basic smoothing and shrinkage will take not only clever methods, but also careful modeling.
Time series forecasting is an important problem across many domains, playing a crucial role in multiple real-world applications. In this paper, we propose a forecasting architecture that combines deep autoregressive models with a Spectral Attention (SA) module, which merges global and local frequency domain information in the models embedded space. By characterizing in the spectral domain the embedding of the time series as occurrences of a random process, our method can identify global trends and seasonality patterns. Two spectral attention models, global and local to the time series, integrate this information within the forecast and perform spectral filtering to remove time seriess noise. The proposed architecture has a number of useful properties: it can be effectively incorporated into well-know forecast architectures, requiring a low number of parameters and producing interpretable results that improve forecasting accuracy. We test the Spectral Attention Autoregressive Model (SAAM) on several well-know forecast datasets, consistently demonstrating that our model compares favorably to state-of-the-art approaches.
148 - Yue Yu , Zhihong Chen , Jie Yang 2011
This article concerns the dimension reduction in regression for large data set. We introduce a new method based on the sliced inverse regression approach, called cluster-based regularized sliced inverse regression. Our method not only keeps the merit of considering both response and predictors information, but also enhances the capability of handling highly correlated variables. It is justified under certain linearity conditions. An empirical application on a macroeconomic data set shows that our method has outperformed the dynamic factor model and other shrinkage methods.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا