Do you want to publish a course? Click here

Negative continuum effects on the two-photon decay rates of hydrogen-like ions

358   0   0.0 ( 0 )
 Added by Paul Indelicato
 Publication date 2009
  fields Physics
and research's language is English
 Authors A. Surzhykov




Ask ChatGPT about the research

Two--photon decay of hydrogen--like ions is studied within the framework of second--order perturbation theory, based on relativistic Diracs equation. Special attention is paid to the effects arising from the summation over the negative--energy (intermediate virtual) states that occurs in such a framework. In order to investigate the role of these states, detailed calculations have been carried out for the $2s_{1/2} - 1s_{1/2}$ and $2p_{1/2} - 1s_{1/2}$ transitions in neutral hydrogen H as well as for hydrogen--like xenon Xe$^{53+}$ and uranium U$^{91+}$ ions. We found that for a correct evaluation of the total and energy--differential decay rates, summation over the negative--energy part of Diracs spectrum should be properly taken into account both for high--$Z$ and low--$Z$ atomic systems.

rate research

Read More

91 - P. Amaro 2009
A theoretical study the all two-photon transitions from initial bound states with ni = 2, 3 in hydrogenic ions is presented. High-precision values of relativistic decay rates for ions with nuclear charge in the range 1 =< Z =< 92 are obtained through the use of finite basis sets for the Dirac equation constructed from B-splines. We also report the spectral (energy) distributions of several resonant transitions, which exhibit interesting structures, such as zeroes in the emission spectrum, indicating that two-photon emission is strongly suppressed at certain frequencies. We compare two different approaches (the Line Profile Approach (LPA) and the QED approach based on the analysis of the relativistic two-loop self energy (TLA)) to regularize the resonant contribution to the decay rate. Predictions for the pure two-photon contributions obtained in these approaches are found to be in a good numerical agreement.
238 - V. A. Yerokhin , C. H. Keitel , 2021
We report calculations of QED corrections to the $g$ factor of Li-like ions induced by the exchange of two virtual photons between the electrons. The calculations are performed within QED theory to all orders in the nuclear binding strength parameter $Zalpha$, where $Z$ is the nuclear charge number and $alpha$ is the fine-structure constant. In the region of low nuclear charges we compare results from three different methods: QED, relativistic many-body perturbation theory, and nonrelativistic QED. All three methods are shown to yield consistent results. With our calculations we improve the accuracy of the theoretical predictions of the $g$ factor of the ground state of Li-like carbon and oxygen by about an order of magnitude. Our theoretical results agree with those from previous calculations but differ by 3-4 standard deviations from the experimental results available for silicon and calcium.
We develop {it ab initio} relativistic QED theory for elastic electron scattering on hydrogen-like highly charged ions for impact energies where, in addition to direct (Coulomb) scattering, the process can also proceed via formation and consequent Auger decay of autoionizing states of the corresponding helium-like ions. Even so the primary goal of the theory is to treat electron scattering on highly charged ions, a comparison with experiment shows that it can also be applied for relatively light ions covering thus a very broad range of the scattering systems. Using the theory we performed calculations for elastic electron scattering on B$^{4+}$, Ca$^{19+}$, Fe$^{25+}$, Kr$^{35+}$, and Xe$^{53+}$. The theory was also generalized for collisions of hydrogen-like highly charged ions with atoms considering the latter as a source of (quasi-) free electrons.
We investigate the possibility of observing a magneto-transverse scattering of photons from alkaline-earth-like atoms as well as alkali-like ions and provide orders of magnitude. The transverse magneto-scattering is physically induced by the interference between two possible quantum transitions of an outer electron in a S-state, one dispersive electric-dipole transition to a P-orbital state and a second resonant electric-quadrupole transition to a P-orbital state. In contrast with previous mechanisms proposed for such an atomic photonic Hall effect, no real photons are scattered by the electric-dipole allowed transition, which increases the ratio of Hall current to background photons significantly. The main experimental challenge is to overcome the small detection threshold, with only 10^{-5} photons scattered per atom per second.
We report on the first measurement of the $beta^+$- and orbital electron capture decay rates of $^{140}$Pr nuclei with the most simple electron configurations: bare nuclei, hydrogen-like and helium-like ions. The measured electron capture decay constant of hydrogen-like $^{140}$Pr$^{58+}$ ions is about 50% larger than that of helium-like $^{140}$Pr$^{57+}$ ions. Moreover, $^{140}$Pr ions with one bound electron decay faster than neutral $^{140}$Pr$^{0+}$ atoms with 59 electrons. To explain this peculiar observation one has to take into account the conservation of the total angular momentum, since only particular spin orientations of the nucleus and of the captured electron can contribute to the allowed decay.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا