No Arabic abstract
We study the effects of clouds on the dynamical and chemical evolution of gas-rich dwarf galaxies, in particular focusing on two model galaxies similar to IZw18 and NGC1569. We consider both scenarios, clouds put at the beginning of the simulation and continuously created infalling ones. Due to dynamical processes and thermal evaporation, the clouds survive only a few tens of Myr, but during this time they act as an additional cooling agent and the internal energy of cloudy models is typically reduced by 20 - 40% in comparison with models without clouds. The clouds delay the development of large-scale outflows, therefore helping to retain a larger amount of gas inside the galaxy. However, especially in models with continuous creation of infalling clouds, their bullet effect can pierce the expanding supershell and create holes through which the superbubble can vent freshly produced metals. Moreover, assuming a pristine chemical composition for the clouds, their interaction with the superbubble dilutes the gas, reducing the metallicity (by up to ~ 0.4 dex) with respect to the one attained by diffuse models.
Using a suite of simulations (Governato et al. 2010) which successfully produce bulgeless (dwarf) disk galaxies, we provide an analysis of their associated cold interstellar media (ISM) and stellar chemical abundance patterns. A preliminary comparison with observations is undertaken, in order to assess whether the properties of the cold gas and chemistry of the stellar components are recovered successfully. To this end, we have extracted the radial and vertical gas density profiles, neutral hydrogen velocity dispersion, and the power spectrum of structure within the ISM. We complement this analysis of the cold gas with a brief examination of the simulations metallicity distribution functions and the distribution of alpha-elements-to-iron.
We present a large sample of fully self-consistent hydrodynamical Nbody/Tree-SPH simulations of isolated dwarf spheroidal galaxies (dSphs). It has enabled us to identify the key physical parameters and mechanisms at the origin of the observed variety in the Local Group dSph properties. The initial total mass (gas + dark matter) of these galaxies is the main driver of their evolution. Star formation (SF) occurs in series of short bursts. In massive systems, the very short intervals between the SF peaks mimic a continuous star formation rate, while less massive systems exhibit well separated SF bursts, as identified observationally. The delay between the SF events is controlled by the gas cooling time dependence on galaxy mass. The observed global scaling relations, luminosity-mass and luminosity-metallicity, are reproduced with low scatter. We take advantage of the unprecedentedly large sample size and data homogeneity of the ESO Large Programme DART, and add to it a few independent studies, to constrain the star formation history of five Milky Way dSphs, Sextans, LeoII, Carina, Sculptor and Fornax. For the first time, [Mg/Fe] vs [Fe/H] diagrams derived from high-resolution spectroscopy of hundreds of individual stars are confronted with model predictions. We find that the diversity in dSph properties may well result from intrinsic evolution. We note, however, that the presence of gas in the final state of our simulations, of the order of what is observed in dwarf irregulars, calls for removal by external processes.
We explore a range of chemical evolution models for the Local Group dwarf spheroidal (dSph) galaxy, Carina. A novel aspect of our work is the removal of the star formation history (SFH) as a `free parameter in the modeling, making use, instead, of its colour-magnitude diagram (CMD)-constrained SFH. By varying the relative roles of galactic winds, re-accretion, and ram-pressure stripping within the modeling, we converge on a favoured scenario which emphasises the respective roles of winds and re-accretion. While our model is successful in recovering most elemental abundance patterns, comparable success is not found for all the neutron capture elements. Neglecting the effects of stripping results in predicted gas fractions approximately two orders of magnitude too high, relative to that observed.
We present DEIMOS multi-object spectroscopy (MOS) of 22 star-forming dwarf galaxies located in four gas-rich groups, including six newly-discovered dwarfs. Two of the galaxies are strong tidal dwarf galaxy (TDG) candidates based on our luminosity-metallicity relation definition. We model the rotation curves of these galaxies. Our sample shows low mass-to-light ratios (M/L=0.73$pm0.39M_odot/L_odot$) as expected for young, star-forming dwarfs. One of the galaxies in our sample has an apparently strongly-falling rotation curve, reaching zero rotational velocity outside the turnover radius of $r_{turn}=1.2r_e$. This may be 1) a polar ring galaxy, with a tilted bar within a face-on disk; 2) a kinematic warp. These scenarios are indistinguishable with our current data due to limitations of slit alignment inherent to MOS-mode observations. We consider whether TDGs can be detected based on their tidal radius, beyond which tidal stripping removes kinematic tracers such as H$alpha$ emission. When the tidal radius is less than about twice the turnover radius, the expected falling rotation curve cannot be reliably measured. This is problematic for as much as half of our sample, and indeed more generally, galaxies in groups like these. Further to this, the H$alpha$ light that remains must be sufficiently bright to be detected; this is only the case for three (14%) galaxies in our sample. We conclude that the falling rotation curves expected of tidal dwarf galaxies are intrinsically difficult to detect.
The formation mechanism of tidal dwarf galaxies means they are expected to contain little or no dark matter. As such, they might be expected to be very sensitive to their environment. We investigate the impact of ram pressure on tidal dwarf galaxies in a parameter study, varying dwarf galaxy properties and ram pressures. We submit model tidal dwarf galaxies to wind-tunnel style tests using a toy ram pressure model. The effects of ram pressure are found to be substantial. If tidal dwarf galaxies have their gas stripped, they may be completely destroyed. Ram pressure drag causes acceleration of our dwarf galaxy models, and this further enhances stellar losses. The dragging can also cause stars to lie in a low surface brightness stellar stream that points in the opposite direction to the stripped gas, in a manner distinctive from tidal streams. We investigate the effects of ram pressure on surface density profiles, the dynamics of the stars, and discuss the consequences for dynamical mass measurements.