Do you want to publish a course? Click here

The Dynamical and Chemical Evolution of Dwarf Spheroidal Galaxies

145   0   0.0 ( 0 )
 Added by Yves Revaz
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a large sample of fully self-consistent hydrodynamical Nbody/Tree-SPH simulations of isolated dwarf spheroidal galaxies (dSphs). It has enabled us to identify the key physical parameters and mechanisms at the origin of the observed variety in the Local Group dSph properties. The initial total mass (gas + dark matter) of these galaxies is the main driver of their evolution. Star formation (SF) occurs in series of short bursts. In massive systems, the very short intervals between the SF peaks mimic a continuous star formation rate, while less massive systems exhibit well separated SF bursts, as identified observationally. The delay between the SF events is controlled by the gas cooling time dependence on galaxy mass. The observed global scaling relations, luminosity-mass and luminosity-metallicity, are reproduced with low scatter. We take advantage of the unprecedentedly large sample size and data homogeneity of the ESO Large Programme DART, and add to it a few independent studies, to constrain the star formation history of five Milky Way dSphs, Sextans, LeoII, Carina, Sculptor and Fornax. For the first time, [Mg/Fe] vs [Fe/H] diagrams derived from high-resolution spectroscopy of hundreds of individual stars are confronted with model predictions. We find that the diversity in dSph properties may well result from intrinsic evolution. We note, however, that the presence of gas in the final state of our simulations, of the order of what is observed in dwarf irregulars, calls for removal by external processes.



rate research

Read More

Using a suite of simulations (Governato et al. 2010) which successfully produce bulgeless (dwarf) disk galaxies, we provide an analysis of their associated cold interstellar media (ISM) and stellar chemical abundance patterns. A preliminary comparison with observations is undertaken, in order to assess whether the properties of the cold gas and chemistry of the stellar components are recovered successfully. To this end, we have extracted the radial and vertical gas density profiles, neutral hydrogen velocity dispersion, and the power spectrum of structure within the ISM. We complement this analysis of the cold gas with a brief examination of the simulations metallicity distribution functions and the distribution of alpha-elements-to-iron.
152 - K. Pilkington , B.K. Gibson 2012
We explore a range of chemical evolution models for the Local Group dwarf spheroidal (dSph) galaxy, Carina. A novel aspect of our work is the removal of the star formation history (SFH) as a `free parameter in the modeling, making use, instead, of its colour-magnitude diagram (CMD)-constrained SFH. By varying the relative roles of galactic winds, re-accretion, and ram-pressure stripping within the modeling, we converge on a favoured scenario which emphasises the respective roles of winds and re-accretion. While our model is successful in recovering most elemental abundance patterns, comparable success is not found for all the neutron capture elements. Neglecting the effects of stripping results in predicted gas fractions approximately two orders of magnitude too high, relative to that observed.
We present the analysis of the FLAMES dataset targeting the central 25 arcmin region of the Sextans dSph. This dataset is the third major part of the high resolution spectroscopic section of the ESO large program 171.B-0588(A) obtained by the Dwarf galaxy Abundances and Radial-velocities Team (DART). Our sample is composed of red giant branch stars down to the level of the horizontal branch in Sextans. It allows to address questions related to both stellar nucleosynthesis and galaxy evolution. We provide metallicities for 81 stars, which cover the wide [Fe/H]=$-$3.2 to $-$1.5 dex range. The abundances of 10 other elements are derived: Mg, Ca, Ti, Sc, Cr, Mn, Co, Ni, Ba, and Eu. Despite its small mass, Sextans is a chemically evolved system, with evidence for the contribution of core-collapse and Type Ia supernovae as well as low metallicity AGBs. This new FLAMES sample offers a sufficiently large number of stars with chemical abundances derived at high accuracy to firmly establish the existence of a plateau in [$alpha$/Fe] at $sim 0.4$ dex, followed by a decrease above [Fe/H]$sim-2$ dex. This is in stark similarity with the Fornax and Sculptor dSphs despite their very different masses and star formation histories. This suggests that these three galaxies had very similar star formation efficiencies in their early formation phases, probably driven by the early accretion of smaller galactic fragments, until the UV-background heating impacted them in different ways. The parallel between the Sculptor and Sextans dSph is also striking when considering Ba and Eu. Finally, as to the iron-peak elements, the decline of [Co/Fe] and [Ni/Fe] above [Fe/H]$sim -2$ implies that the production yields of Ni and Co in SNeIa is lower than that of Fe. The decrease in [Ni/Fe] favours models of SNeIa based on the explosion of double degenerate sub-Chandrasekhar mass white dwarfs.
66 - Evan N. Kirby 2019
We present deep spectroscopy from Keck/DEIMOS of Andromeda I, III, V, VII, and X, all of which are dwarf spheroidal satellites of M31. The sample includes 256 spectroscopic members across all five dSphs. We confirm previous measurements of the velocity dispersions and dynamical masses, and we provide upper limits on bulk rotation. Our measurements confirm that M31 satellites obey the same relation between stellar mass and stellar metallicity as Milky Way (MW) satellites and other dwarf galaxies in the Local Group. The metallicity distributions show similar trends with stellar mass as MW satellites, including evidence in massive satellites for external influence, like pre-enrichment or gas accretion. We present the first measurements of individual element ratios, like [Si/Fe], in the M31 system, as well as measurements of the average [alpha/Fe] ratio. The trends of [alpha/Fe] with [Fe/H] also follow the same galaxy mass-dependent patterns as MW satellites. Less massive galaxies have more steeply declining slopes of [alpha/Fe] that begin at lower [Fe/H]. Finally, we compare the chemical evolution of M31 satellites to M31s Giant Stellar Stream and smooth halo. The properties of the M31 system support the theoretical prediction that the inner halo is composed primarily of massive galaxies that were accreted early. As a result, the inner halo exhibits higher [Fe/H] and [alpha/Fe] than surviving satellite galaxies.
156 - P. North 2012
We provide manganese abundances (corrected for the effect of the hyperfine structure) for a large number of stars in the dwarf spheroidal galaxies Sculptor and Fornax, and for a smaller number in the Carina and Sextans dSph galaxies. Abundances had already been determined for a number of other elements in these galaxies, including alpha and iron-peak ones, which allowed us to build [Mn/Fe] and [Mn/alpha] versus [Fe/H] diagrams. The Mn abundances imply sub-solar [Mn/Fe] ratios for the stars in all four galaxies examined. In Sculptor, [Mn/Fe] stays roughly constant between [Fe/H]sim -1.8 and -1.4 and decreases at higher iron abundance. In Fornax, [Mn/Fe] does not vary in any significant way with [Fe/H]. The relation between [Mn/alpha] and [Fe/H] for the dSph galaxies is clearly systematically offset from that for the Milky Way, which reflects the different star formation histories of the respective galaxies. The [Mn/alpha] behavior can be interpreted as a result of the metal-dependent Mn yields of type II and type Ia supernovae. We also computed chemical evolution models for star formation histories matching those determined empirically for Sculptor, Fornax, and Carina, and for the Mn yields of SNe Ia, which were assumed to be either constant or variable with metallicity. The observed [Mn/Fe] versus [Fe/H] relation in Sculptor, Fornax, and Carina can be reproduced only by the chemical evolution models that include a metallicity-dependent Mn yield from the SNe Ia.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا