Do you want to publish a course? Click here

The Second Survey of the Molecular Clouds in the Large Magellanic Cloud by NANTEN I: Catalog of Molecular Clouds

108   0   0.0 ( 0 )
 Added by Akiko Kawamura
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

The second survey of the molecular clouds in 12CO (J = 1-0) was carried out in the Large Magellanic Cloud by NANTEN. The sensitivity of this survey is twice as high as that of the previous NANTEN survey, leading to a detection of molecular clouds with M_CO > 2 x 10^4 M_sun. We identified 272 molecular clouds, 230 of which are detected at three or more observed positions. We derived the physical properties, such as size, line width, virial mass, of the 164 GMCs which have an extent more than the beam size of NANTEN in both the major and minor axes. The CO luminosity and virial mass of the clouds show a good correlation of M_VIR propto L_CO^{1.1 +- 0.1} with a Spearman rank correlation of 0.8 suggesting that the clouds are in nearly virial equilibrium. Assuming the clouds are in virial equilibrium, we derived an X_CO-factor to be ~ 7 x 10^20 cm^-2 (K km s^-1)^-1. The mass spectrum of the clouds is fitted well by a power law of N_cloud(>M_CO) proportional to M_CO^{-0.75 +- 0.06} above the completeness limit of 5 x 10^4 M_sun. The slope of the mass spectrum becomes steeper if we fit only the massive clouds; e.g., N_cloud (>M_CO) is proportional to M_CO^{-1.2 +- 0.2} for M_CO > 3 x 10^5 M_sun.



rate research

Read More

We studied star formation activities in the molecular clouds in the Large Magellanic Cloud. We have utilized the second catalog of 272 molecular clouds obtained by NANTEN to compare the cloud distribution with signatures of massive star formation including stellar clusters, and optical and radio HII regions. We find that the molecular clouds are classified into three types according to the activities of massive star formation; Type I shows no signature of massive star formation, Type II is associated with relatively small HII region(s) and Type III with both HII region(s) and young stellar cluster(s). The radio continuum sources were used to confirm that Type I GMCs do not host optically hidden HII regions. These signatures of massive star formation show a good spatial correlation with the molecular clouds in a sense they are located within ~100 pc of the molecular clouds. Among possible ideas to explain the GMC Types, we favor that the Types indicate an evolutionary sequence; i.e., the youngest phase is Type I, followed by Type II and the last phase is Type III, where the most active star formation takes place leading to cloud dispersal. The number of the three types of GMCs should be proportional to the time scale of each evolutionary stage if a steady state of massive star and cluster formation is a good approximation. By adopting the time scale of the youngest stellar clusters, 10 Myrs, we roughly estimate the timescales of Types I, II and III to be 6 Myrs, 13 Myrs and 7 Myrs, respectively, corresponding to a lifetime of 20-30 Myrs for the GMCs with a mass above the completeness limit, 5 x 10^4 Msun.
Spectral line survey observations of 7 molecular clouds in the Large Magellanic Cloud (LMC) have been conducted in the 3 mm band with the Mopra 22 m telescope to reveal chemical compositions in low metallicity conditions. Spectral lines of fundamental species such as CS, SO, CCH, HCN, HCO+, and HNC are detected in addition to those of CO and 13CO, while CH3OH is not detected in any source and N2H+ is marginally detected in two sources. The molecular-cloud scale (10 pc scale) chemical composition is found to be similar among the 7 sources regardless of different star formation activities, and hence, it represents the chemical composition characteristic to the LMC without influences of star formation activities. In comparison with chemical compositions of Galactic sources, the characteristic features are (1) deficient N-bearing molecules, (2) abundant CCH, and (3) deficient CH3OH. The feature (1) is due to a lower elemental abundance of nitrogen in the LMC, whereas the features (2) and (3) seem to originate from extended photodissociation regions and warmer temperature in cloud peripheries due to a lower abundance of dust grains in the low metallicity condition. In spite of general resemblance of chemical abundances among the seven sources, the CS/HCO+ and SO/HCO+ ratios are found to be slightly higher in a quiescent molecular cloud. An origin of this trend is discussed in relation to possible depletion of sulfur along molecular cloud formation.
78 - D. Paradis , C. Meny , M. Juvela 2019
In this present analysis we investigate the dust properties associated with the different gas phases (including the ionized phase this time) of the LMC molecular clouds at 1$^{prime}$ angular resolution (four times greater than a previous analysis) and with a larger spectral coverage range thanks to Herschel data. We also ensure the robustness of our results in the framework of various dust models. We performed a decomposition of the dust emission in the infrared (3.6 $mic$ to 500 $mic$) associated with the atomic, molecular, and ionized gas phases in the molecular clouds of the LMC. The resulting spectral energy distributions were fitted with four distinct dust models. We then analyzed the model parameters such as the intensity of the radiation field and the relative dust abundances, as well as the slope of the emission spectra at long wavelengths. This work allows dust models to be compared with infrared data in various environments for the first time, which reveals important differences between the models at short wavelengths in terms of data fitting (mainly in the PAH bands). In addition, this analysis points out distinct results according to the gas phases, such as dust composition directly affecting the dust temperature and the dust emissivity in the submm, and different dust emission in the near-infrared (NIR). We observe direct evidence of dust property evolution from the diffuse to the dense medium in a large sample of molecular clouds in the LMC. In addition, the differences in the dust component abundances between the gas phases could indicate different origins of grain formation. We also point out the presence of a NIR-continuum in all gas phases, with an enhancement in the ionized gas. We favor the hypothesis of an additional dust component as the carrier of this continuum.
43 - Soojong Pak 1997
The chemical structure of neutral clouds in low metallicity environments is examined with particular emphasis on the H to H_2 and C+ to CO transitions. We observed near-IR H_2 lines and the CO J=1-0 line from 30 Doradus and N159/N160 in the Large Magellanic Cloud and from DEM S 16, DEM S 37, and LI-SMC 36 in the Small Magellanic Cloud. We find that the H_2 emission is UV-excited and that (weak) CO emission always exists (in our surveyed regions) toward positions where H_2 and [CII] emission have been detected. Using a PDR code and a radiative transfer code, we simulate the emission of line radiation from spherical clouds and from large planar clouds. Because the [CII] emission and H_2 emission arise on the surface of the cloud and the lines are optically thin, these lines are not affected by changes in the relative sizes of the neutral cloud and the CO bearing core, while the optically thick CO emission can be strongly affected. The sizes of clouds are estimated by measuring the deviation of CO emission strength from that predicted by a planar cloud model of a given size. The average cloud column density and therefore size increases as the metallicity decreases. Our result agrees with the photoionization regulated star formation theory by Mc Kee (1989).
142 - H. Sano , Y. Yamane , K. Tokuda 2018
N103B is a Type Ia supernova remnant (SNR) in the Large Magellanic Cloud (LMC). We carried out new $^{12}$CO($J$ = 3-2) and $^{12}$CO($J$ = 1-0) observations using ASTE and ALMA. We have confirmed the existence of a giant molecular cloud (GMC) at $V_mathrm{LSR}$ $sim$245 km s$^{-1}$ towards the southeast of the SNR using ASTE $^{12}$CO($J$ = 3-2) data at an angular resolution of $sim$25$$ ($sim$6 pc in the LMC). Using the ALMA $^{12}$CO($J$ = 1-0) data, we have spatially resolved CO clouds along the southeastern edge of the SNR with an angular resolution of $sim$1.8$$ ($sim$0.4 pc in the LMC). The molecular clouds show an expanding gas motion in the position-velocity diagram with an expansion velocity of $sim5$ km s$^{-1}$. The spatial extent of the expanding shell is roughly similar to that of the SNR. We also find tiny molecular clumps in the directions of optical nebula knots. We present a possible scenario that N103B exploded in the wind-bubble formed by the accretion winds from the progenitor system, and is now interacting with the dense gas wall. This is consistent with a single-degenerate scenario.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا