Do you want to publish a course? Click here

Orbital and spin effects for the upper critical field in As deficient disordered Fe pnictide superconductors

162   0   0.0 ( 0 )
 Added by S. -L. Drechsler
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report B_c2 data for LaO_{0.9}F_{0.1}FeAs_{1-delta} in a wide T and field range up to 60 Tesla. The large slope of B_c2 approx ~ -6 Tesla/K near an improved T_c = 28.5 K of the in-plane B_c2(T) contrasts with a flattening starting at 23 K above 30 Tesla we regard as the onset of Pauli-limited behavior (PLB) with B_c2(0) about 65 Tesla. We interpret a similar hitherto unexplained flattening of the B_c2(T) curves reported for at least three other disordered closely related systems as also as a manifestation of PLB. Their Maki parameters have been estimated analyzing their B_c2(T) data within the WHH approach. The pronounced PLB of (Ba,K)Fe_2As_2 single crystals from a tin-flux is attributed also to a significant As deficiency. Consequences of our results are discussed in terms of disorder effects within conventional (CSC) and unconventional superconductivity (USC). USC scenarios with nodes on individual Fermi surface sheets (FSS), can be discarded for our samples. The increase of dB_c2/dT|_{T_c} by sizeable disorder provides evidence for an important intraband (intra-FSS) contribution to the orbital upper critical field. We suggest that it can be ascribed either to an impurity driven transition from s_{+-} USC to CSC of an extended s_{++}-wave state or to a stabilized s_{+-}-state provided As-vacancies cause predominantly strong intraband scattering in the unitary limit. We compare our results with B_c2 data from the literature with no PLB for fields below 60 to 70 Tesla probed so far. A novel disorder related scenario of a complex interplay of SC with two different competing magnetic instabilities is suggested.



rate research

Read More

We present a short review of our studies of disorder influence upon Ginzburg - Landau expansion coefficients in Anderson - Hubbard model with attraction in the framework of the generalized DMFT+$Sigma$ approximation. A wide range of attractive potentials $U$ is considered - from weak coupling limit, where superconductivity is described by BCS model, to the limit of very strong coupling, where superconducting transition is related to Bose - Einstein condensation (BEC) of compact Cooper pairs, which are formed at temperatures significantly higher than the temperature of superconducting transition, as well as the wide range of disorders - from weak to strong, when the system is in the vicinity of Anderson transition. For the same range of parameters we study in detail the temperature behavior of orbital and paramagnetic upper critical field $H_{c2}(T)$, which demonstrates the anomalies both due to the growth of attractive potential and the effects of strong disordering.
The upper critical fields ($H_{c2}$) of the single crystals $rm(Sr,Na)Fe_2As_2$ and $rm Ba_{0.55}K_{0.45}Fe_2As_2$ were determined by means of measuring the electrical resistivity, $ rho_{xx}(mu_0H)$, using the facilities of pulsed magnetic field at Los Alamos. In general, these compounds possess a very large upper critical field ($H_{c2}(0)$) with a weak anisotropic effect. The detailed curvature of $H_{c2}(T_c)$ may depend on the magnetic field orientation and the sample compositions. We argue that such a difference mainly results from the multi-band effect, which might be modified via doping.
We study disorder effects upon the temperature behavior of the upper critical magnetic field in attractive Hubbard model within the generalized $DMFT+Sigma$ approach. We consider the wide range of attraction potentials $U$ - from the weak coupling limit, where superconductivity is described by BCS model, up to the strong coupling limit, where superconducting transition is related to Bose - Einstein condensation (BEC) of compact Cooper pairs, formed at temperatures significantly higher than superconducting transition temperature, as well as the wide range of disorder - from weak to strong, when the system is in the vicinity of Anderson transition. The growth of coupling strength leads to the rapid growth of $H_{c2}(T)$, especially at low temperatures. In BEC limit and in the region of BCS - BEC crossover $H_{c2}(T)$ dependence becomes practically linear. Disordering also leads to the general growth of $H_{c2}(T)$. In BCS limit of weak coupling increasing disorder lead both to the growth of the slope of the upper critical field in the vicinity of transition point and to the increase of $H_{c2}(T)$ in low temperature region. In the limit of strong disorder in the vicinity of the Anderson transition localization corrections lead to the additional growth of $H_{c2}(T)$ at low temperatures, so that the $H_{c2}(T)$ dependence becomes concave. In BCS - BEC crossover region and in BEC limit disorder only slightly influences the slope of the upper critical field close to $T_{c}$. However, in the low temperature region $H_{c2}(T)$ may significantly grow with disorder in the vicinity of the Anderson transition, where localization corrections notably increase $H_{c2}(T=0)$ also making $H_{c2}(T)$ dependence concave.
Detailed measurements of the in-plane resistivity were performed in a high-quality Ba(Fe$_{1-x}$Co$_{x}$)$_2$As$_2$ ($x=0.065$) single crystal, in magnetic fields up to 9 T and with different orientations $theta$ relative to the crystal $c$ axis. A significant $rho(T)_{H,theta}$ rounding is observed just above the superconducting critical temperature $T_c$ due to Cooper pairs created by superconducting fluctuations. These data are analyzed in terms of a generalization of the Aslamazov-Larkin approach, that extends its applicability to high reduced-temperatures and magnetic fields. This method allows us to carry out a criterion-independent determination of the angular dependence of the upper critical field, $H_{c2}(theta)$. In spite of the relatively small anisotropy of this compound, it is found that $H_{c2}(theta)$ presents a significant deviation from the single-band 3D anisotropic Ginzburg-Landau (3D-aGL) approach, particularly for large $theta$ (typically above $sim60^o$). These results are interpreted in terms of the multiband nature of these materials, in contrast with other proposals for similar $H_{c2}(theta)$ anomalies. Our results are also consistent with an effective anisotropy factor almost temperature independent near $T_c$, a result that differs from the ones obtained by using a single-band model.
We report on orbital-dependent quasiparticle dynamics in EuFe$_2$As$_2$, a parent compound of Fe-based superconductors and a novel way to experimentally identify this behavior, using time- and angle-resolved photoelectron spectroscopy across the spin density wave transition. We observe two different relaxation time scales for photo-excited d$_x$$_z$/d$_y$$_z$ and d$_x$$_y$ electrons. While d$_x$$_z$/d$_y$$_z$ electrons relax faster through the electron-electron scattering channel, showing an itinerant character, d$_x$$_y$ electrons form a quasi-equilibrium state with the lattice due to their localized character, and the state decays slowly. Our findings suggest that electron correlation in Fe-pnictides is an important property, which should be taken into careful account when describing the electronic properties of both parent and electron-doped compounds, and therefore establish a strong connection with cuprates.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا