No Arabic abstract
We analyze the complex interplay of the strong correlations and impurities in a high temperature superconductor and show that both the nature and degree of the inhomogeneities at zero temperature in the local order parameters change drastically from what are obtained in a simple Hartree-Fock-Bogoliubov theory. While both the strong electronic repulsions and disorder contribute to the nanoscale inhomogeneity in the population of charge-carriers, we find them to compete with each other leading to a relatively smooth variation of the local density. Our self-consistent calculations modify the spatial fluctuations in the pairing amplitude by suppressing all the double-occupancy within a Gutzwiller formalism and prohibit the formation of distinct superconducting-`islands. In contrast, presence of such `islands controls the outcome if strong correlations are neglected. The reorganization of the spatial structures in the Gutzwiller method makes these superconductors surprisingly insensitive to the impurities. This is illustrated by a very weak decay of superfluid stiffness, off-diagonal long range order and local density of states up to a large disorder strength. Exploring the origin of such a robustness we conclude that the underlying one-particle normal states reshape in a rich manner, such that the superconductor formed by pairing these states experiences a weaker but spatially correlated effective disorder. Such a route to superconductivity is evocative of Andersons theorem. Our results capture the key experimental trends in the cuprates.
Motivated by recent proposals of correlation induced insensitivity of d-wave superconductors to impurities, we develop a simple pairing theory for these systems for up to a moderate strength of disorder. Our description implements the key ideas of Anderson, originally proposed for disordered s-wave superconductors, but in addition takes care of the inherent strong electronic repulsion in these compounds, as well as disorder induced inhomogeneities. We first obtain the self-consistent one-particle states, that capture the effects of disorder exactly, and strong correlations using Gutzwiller approximation. These `normal states, representing the interplay of strong correlations and disorder, when coupled through pairing attractions following the path of Bardeen-Cooper-Schrieffer (BCS), produce results nearly identical to those from a more sophisticated Gutzwiller augmented Bogoliubov-de Gennes analysis.
We investigate the effect of strong disorder on a system with strong electronic repulsion. In absence of disorder, the system has a d-wave superconducting ground-state with strong non-BCS features due to its proximity to a Mott insulator. We find that, while strong correlations make superconductivity in this system immune to weak disorder, superconductivity is destroyed efficiently when disorder strength is comparable to the effective bandwidth. The suppression of charge motion in regions of strong potential fluctuation leads to formation of Mott insulating patches, which anchor a larger non-superconducting region around them. The system thus breaks into islands of Mott insulating and superconducting regions, with Anderson insulating regions occurring along the boundary of these regions. Thus, electronic correlation and disorder, when both are strong, aid each other in destroying superconductivity, in contrast to their competition at weak disorder. Our results shed light on why Zinc impurities are efficient in destroying superconductivity in cuprates, even though it is robust to weaker impurities.
The Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase is an unconventional superconducting state found under the influence of strong Zeeman field. This phase is identified by finite center-of-mass momenta in the Cooper pairs, causing the pairing amplitude to oscillate in real space. Repulsive correlations, on the other hand, smear out spatial inhomogeneities in d-wave superconductors. We investigate the FFLO state in a strongly correlated d-wave superconductor within a consolidated framework of Hartree-Fock-Bogoliubov theory and Gutzwiller approximation. We find that the profound effects of strong correlations lie in shifting the BCS-FFLO phase boundary towards a lower Zeeman field and thereby enlarging the window of the FFLO phase. In the FFLO state, our calculation features a sharp mid-gap peak in the density of states, indicating the formation of strongly localized Andreev bound states. We also find that the signatures of the FFLO phase survive even in the presence of an additional translational symmetry breaking competing order in the ground state. This is demonstrated by considering a broken symmetry ground state with a simultaneous presence of the d-wave superconducting order and a spin-density wave order, often found in unconventional superconductors.
DC and finite frequency transport measurements of thin films of amorphous indium oxide that were driven through the critical point of superconductor-insulator transition by the application of perpendicular magnetic field are presented. The observation of non-monotonic dependence of resistance on magnetic field in the insulating phase, novel transport characteristics near the resistance peak and finite superfluid stiffness in the insulating phase are all discussed from the point of view that suggests a possible relation between the conduction mechanisms in the superconducting and insulating phases. The results are summarized in the form of an experimental phase diagram for disordered superconductors in the disorder-magnetic field plane.
We investigate the effect of thermal fluctuations on the two-particle spectral function for a disordered $s$-wave superconductor in two dimensions, focusing on the evolution of the collective amplitude and phase modes. We find three main effects of thermal fluctuations: (a) the phase mode is softened with increasing temperature reflecting the decrease of superfluid stiffness; (b) remarkably, the non-dispersive collective amplitude modes at finite energy near ${bf q}=[0,0]$ and ${bf q}=[pi,pi]$ survive even in presence of thermal fluctuations in the disordered superconductor; and (c) the scattering of the thermally excited fermionic quasiparticles leads to low energy incoherent spectral weight that forms a strongly momentum-dependent background halo around the phase and amplitude collective modes and broadens them. Due to momentum and energy conservation constraints, this halo has a boundary which disperses linearly at low momenta and shows a strong dip near the $[pi,pi]$ point in the Brillouin zone.