No Arabic abstract
We present an examination of high resolution, ultraviolet spectroscopy from Hubble Space Telescope of the photospheric spectrum of the O-supergiant in the massive X-ray binary HD 226868 = Cyg X-1. We analyzed this and ground-based optical spectra to determine the effective temperature and gravity of the O9.7 Iab supergiant. Using non-local thermodynamic equilibrium (non-LTE), line blanketed, plane parallel models from the TLUSTY grid, we obtain T_eff = 28.0 +/- 2.5kK and log g > 3.00 +/- 0.25, both lower than in previous studies. The optical spectrum is best fit with models that have enriched He and N abundances. We fit the model spectral energy distribution for this temperature and gravity to the UV, optical, and IR fluxes to determine the angular size of and extinction towards the binary. The angular size then yields relations for the stellar radius and luminosity as a function of distance. By assuming that the supergiant rotates synchronously with the orbit, we can use the radius - distance relation to find mass estimates for both the supergiant and black hole as a function of the distance and the ratio of stellar to Roche radius. Fits of the orbital light curve yield an additional constraint that limits the solutions in the mass plane. Our results indicate masses of 23^{+8}_{-6} M_sun for the supergiant and 11^{+5}_{-3} M_sun for the black hole.
Binary systems with an accreting compact object are a unique chance to investigate the strong, clumpy, line-driven winds of early type supergiants by using the compact objects X-rays to probe the wind structure. We analyze the two-component wind of HDE 226868, the O9.7Iab giant companion of the black hole Cyg X-1 using 4.77 Ms of RXTE observations of the system taken over the course of 16 years. Absorption changes strongly over the 5.6 d binary orbit, but also shows a large scatter at a given orbital phase, especially at superior conjunction. The orbital variability is most prominent when the black hole is in the hard X-ray state. Our data are poorer for the intermediate and soft state, but show signs for orbital variability of the absorption column in the intermediate state. We quantitatively compare the data in the hard state to a toy model of a focussed Castor-Abbott-Klein-wind: as it does not incorporate clumping, the model does not describe the observations well. A qualitative comparison to a simplified simulation of clumpy winds with spherical clumps shows good agreement in the distribution of the equivalent hydrogen column density for models with a porosity length on the order of the stellar radius at inferior conjunction; we conjecture that the deviations between data and model at superior conjunction could be either due to lack of a focussed wind component in the model or a more complicated clump structure.
We accurately determine the fundamental system parameters of the neutron-star X-ray transient Cen X-4 solely using phase-resolved high-resolution UVES spectroscopy. We first determine the radial-velocity curve of the secondary star and then model the shape of the phase-resolved absorption line profiles using an X-ray binary model. The model computes the exact rotationally broadened phase-resolved spectrum and does not depend on assumptions about the rotation profile, limb-darkening coefficients and the effects of contamination from an accretion disk. We determine the secondary star-to-neutron star binary mass ratio to be 0.1755+/-0.0025, which is an order of magnitude more accurate than previous estimates. We also constrain the inclination angle to be 32 (+8; -2) degrees, Combining these values with the results of the radial velocity study gives a neutron star mass of 1.94 (+0.37; -0.85) Msun consistent with previous estimates. Finally, we perform the first Roche tomography reconstruction of the secondary star in an X-ray binary. The tomogram reveals surface inhomogeneities that are due to the presence of cool starspots. A large cool polar spot, similar to that seen in Doppler images of rapidly-rotating isolated stars is present on the Northern hemisphere of the K7 secondary star and we estimate that about 4 per cent of the total surface area of the donor star is covered with spots. This evidence for starspots supports the idea that magnetic braking plays an important role in the evolution of low-mass X-ray binaries.
We present the C III {lambda}977, O VI {lambda}{lambda}1032, 1038 and N IV] {lambda}1486 emission line maps of the Cygnus Loop, obtained with the newly processed data of Spectroscopy of Plasma Evolution from Astrophysical Radiation (SPEAR; also known as FIMS) mission. In addition, the Si IV+O IV] line complexes around 1400 {AA} are resolved into two separate emission lines, whose intensity demonstrates a relatively high Si IV region predicted in the previous study. The morphological similarity between the O VI and X-ray images, as well as a comparison of the O VI intensity with the value expected from the X-ray results, indicates that large portions of the observed O VI emissions could be produced from X-ray emitting gas. Comparisons of the far-ultraviolet (FUV) images with the optical and H I 21 cm images, reveal spatial variations of shock-velocity populations and high FUV extinction in the direction of a previously identified H I cloud. By calculating the FUV line ratios for several subregions of the Cygnus Loop, we investigate the spatial variation of the population of radiative shock velocities; and the effects of resonance scattering, X-ray emitting gas, and non-radiative shocks. The FUV and X-ray luminosity comparisons between the Cygnus Loop and the Vela supernova remnant suggest that the fraction of shocks in the early evolutionary stages is much larger in the Cygnus Loop.
H2D+ is a primary ion which dominates the gas-phase chemistry of cold dense gas. Therefore it is hailed as a unique tool in probing the earliest, prestellar phase of star formation. Observationally, its abundance and distribution is however just beginning to be understood in low-mass prestellar and cluster-forming cores. In high mass star forming regions, H2D+ has been detected only in two cores, and its spatial distribution remains unknown. Here we present the first map of the 372 GHz ortho-H2D+ and N2H+ 4-3 transition in the DR21 filament of Cygnus-X with the JCMT, and N2D+ 3--2 and dust continuum with the SMA. We have discovered five very extended (<= 34000 AU diameter) weak structures in H2D+ in the vicinity of, but distinctly offset from embedded protostars. More surprisingly, the H2D+ peak is not associated with either a dust continuum or N2D+ peak. We have therefore uncovered extended massive cold dense gas that was undetected with previous molecular line and dust continuum surveys of the region. This work also shows that our picture of the structure of cores is too simplistic for cluster forming cores and needs to be refined: neither dust continuum with existing capabilities, nor emission in tracers like N2D+ can provide a complete census of the total prestellar gas in such regions. Sensitive H2D+ mapping of the entire DR21 filament is likely to discover more of such cold quiescent gas reservoirs in an otherwise active high mass star-forming region.
Blue supergiant stars are known to display photometric and spectroscopic variability that is suggested to be linked to stellar pulsations. Pulsational activity in massive stars strongly depends on the stars evolutionary stage and is assumed to be connected with mass-loss episodes, the appearance of macroturbulent line broadening, and the formation of clumps in the wind. To investigate a possible interplay between pulsations and mass-loss, we carried out an observational campaign of the supergiant 55 Cyg over a period of five years to search for photospheric activity and cyclic mass-loss variability in the stellar wind. We modeled the H, He I, Si II and Si III lines using the nonlocal thermal equilibrium atmosphere code FASTWIND and derived the photospheric and wind parameters. In addition, we searched for variability in the intensity and radial velocity of photospheric lines and performed a moment analysis of the line profiles to derive frequencies and amplitudes of the variations. The Halpha line varies with time in both intensity and shape, displaying various types of profiles: P Cygni, pure emission, almost complete absence, and double or multiple peaked. The star undergoes episodes of variable mass-loss rates that change by a factor of 1.7-2 on different timescales. We also observe changes in the ionization rate of Si II and determine a multiperiodic oscillation in the He I absorption lines, with periods ranging from a few hours to 22.5 days. We interpret the photospheric line variations in terms of oscillations in p-, g-, and strange modes. We suggest that these pulsations can lead to phases of enhanced mass loss. Furthermore, they can mislead the determination of the stellar rotation. We classify the star as a post-red supergiant, belonging to the group of alpha Cyg variables.