We generalize the second law of thermodynamics in its maximum work formulation for a nonequilibrium initial distribution. It is found that in an isothermal process, the Boltzmann relative entropy (H-function) is not just a Lyapunov function but also tells us the maximum work that may be gained from a nonequilibrium initial state. The generalized second law also gives a fundamental relation between work and information. It is valid even for a small Hamiltonian system not in contact with a heat reservoir but with an effective temperature determined by the isentropic condition. Our relation can be tested in the Szilard engine, which will be realized in the laboratory.
We derive a generalization of the Second Law of Thermodynamics that uses Bayesian updates to explicitly incorporate the effects of a measurement of a system at some point in its evolution. By allowing an experimenters knowledge to be updated by the measurement process, this formulation resolves a tension between the fact that the entropy of a statistical system can sometimes fluctuate downward and the information-theoretic idea that knowledge of a stochastically-evolving system degrades over time. The Bayesian Second Law can be written as $Delta H(rho_m, rho) + langle mathcal{Q}rangle_{F|m}geq 0$, where $Delta H(rho_m, rho)$ is the change in the cross entropy between the original phase-space probability distribution $rho$ and the measurement-updated distribution $rho_m$, and $langle mathcal{Q}rangle_{F|m}$ is the expectation value of a generalized heat flow out of the system. We also derive refin
The irreversibility in a statistical system is traced to its probabilistic evolution, and the molecular chaos assumption is not its unique consequence as is commonly believed. Under the assumption that the rate of change of the each microstate probability vanishes only as time diverges, we prove that the entropy of a system at constant energy cannot decrease with time.
A microscopic definition of the thermodynamic entropy in an isolated quantum system must satisfy (i) additivity, (ii) extensivity and (iii) the second law of thermodynamics. We show that the diagonal entropy, which is the Shannon entropy in the energy eigenbasis at each instant of time, meets the first two requirements and that the third requirement is satisfied if an arbitrary external operation is performed at typical times. In terms of the diagonal entropy, thermodynamic irreversibility follows from the facts that the Hamiltonian dynamics restricts quantum trajectories under unitary evolution and that the external operation is performed without referring to any particular information about the microscopic state of the system.
It is shown that the laws of thermodynamics are extremely robust under generalizations of the form of entropy. Using the Bregman-type relative entropy, the Clausius inequality is proved to be always valid. This implies that thermodynamics is highly universal and does not rule out consistent generalization of the maximum entropy method.
We study two interacting identical run and tumble particles (RTPs) in one dimension. Each particle is driven by a telegraphic noise, and in some cases, also subjected to a thermal white noise with a corresponding diffusion constant $D$. We are interested in the stationary bound state formed by the two RTPs in the presence of a mutual attractive interaction. The distribution of the relative coordinate $y$ indeed reaches a steady state that we characterize in terms of the solution of a second-order differential equation. We obtain the explicit formula for the stationary probability $P(y)$ of $y$ for two examples of interaction potential $V(y)$. The first one corresponds to $V(y) sim |y|$. In this case, for $D=0$ we find that $P(y)$ contains a delta function part at $y=0$, signaling a strong clustering effect, together with a smooth exponential component. For $D>0$, the delta function part broadens, leading instead to weak clustering. The second example is the harmonic attraction $V(y) sim y^2$ in which case, for $D=0$, $P(y)$ is supported on a finite interval. We unveil an interesting relation between this two-RTP model with harmonic attraction and a three-state single RTP model in one dimension, as well as with a four-state single RTP model in two dimensions. We also provide a general discussion of the stationary bound state, including examples where it is not unique, e.g., when the particles cannot cross due to an additional short-range repulsion.