Do you want to publish a course? Click here

The Bayesian Second Law of Thermodynamics

153   0   0.0 ( 0 )
 Added by Sean Carroll
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We derive a generalization of the Second Law of Thermodynamics that uses Bayesian updates to explicitly incorporate the effects of a measurement of a system at some point in its evolution. By allowing an experimenters knowledge to be updated by the measurement process, this formulation resolves a tension between the fact that the entropy of a statistical system can sometimes fluctuate downward and the information-theoretic idea that knowledge of a stochastically-evolving system degrades over time. The Bayesian Second Law can be written as $Delta H(rho_m, rho) + langle mathcal{Q}rangle_{F|m}geq 0$, where $Delta H(rho_m, rho)$ is the change in the cross entropy between the original phase-space probability distribution $rho$ and the measurement-updated distribution $rho_m$, and $langle mathcal{Q}rangle_{F|m}$ is the expectation value of a generalized heat flow out of the system. We also derive refin



rate research

Read More

A microscopic definition of the thermodynamic entropy in an isolated quantum system must satisfy (i) additivity, (ii) extensivity and (iii) the second law of thermodynamics. We show that the diagonal entropy, which is the Shannon entropy in the energy eigenbasis at each instant of time, meets the first two requirements and that the third requirement is satisfied if an arbitrary external operation is performed at typical times. In terms of the diagonal entropy, thermodynamic irreversibility follows from the facts that the Hamiltonian dynamics restricts quantum trajectories under unitary evolution and that the external operation is performed without referring to any particular information about the microscopic state of the system.
It is shown that the laws of thermodynamics are extremely robust under generalizations of the form of entropy. Using the Bregman-type relative entropy, the Clausius inequality is proved to be always valid. This implies that thermodynamics is highly universal and does not rule out consistent generalization of the maximum entropy method.
Within the context of scalar-tensor gravity, we explore the generalized second law (GSL) of gravitational thermodynamics. We extend the action of ordinary scalar-tensor gravity theory to the case in which there is a non-minimal coupling between the scalar field and the matter field (as chameleon field). Then, we derive the field equations governing the gravity and the scalar field. For a FRW universe filled only with ordinary matter, we obtain the modified Friedmann equations as well as the evolution equation of the scalar field. Furthermore, we assume the boundary of the universe to be enclosed by the dynamical apparent horizon which is in thermal equilibrium with the Hawking temperature. We obtain a general expression for the GSL of thermodynamics in the scalar-tensor gravity model. For some viable scalar-tensor models, we first obtain the evolutionary behaviors of the matter density, the scale factor, the Hubble parameter, the scalar field, the deceleration parameter as well as the effective equation of state (EoS) parameter. We conclude that in most of the models, the deceleration parameter approaches a de Sitter regime at late times, as expected. Also the effective EoS parameter acts like the LCDM model at late times. Finally, we examine the validity of the GSL for the selected models.
The zeroth law of thermodynamics involves a transitivity relation (pairwise between three objects) expressed either in terms of `equal temperature (ET), or `in equilibrium (EQ) conditions. In conventional thermodynamics conditional on vanishingly weak system-bath coupling these two conditions are commonly regarded as equivalent. In this work we show that for thermodynamics at strong coupling they are inequivalent: namely, two systems can be in equilibrium and yet have different effective temperatures. A recent result cite{NEqFE} for Gaussian quantum systems shows that an effective temperature $T^{*}$ can be defined at all times during a systems nonequilibrium evolution, but because of the inclusion of interaction energy, after equilibration the systems $T^*$ is slightly higher than the bath temperature $T_{textsc{b}}$, with the deviation depending on the coupling. A second object coupled with a different strength with an identical bath at temperature $T_{textsc{b}}$ will not have the same equilibrated temperature as the first object. Thus $ET eq EQ $ for strong coupling thermodynamics. We then investigate the conditions for dynamical equilibration for two objects 1 and 2 strongly coupled with a common bath $B$, each with a different equilibrated effective temperature. We show this is possible, and prove the existence of a generalized fluctuation-dissipation relation under this configuration. This affirms that `in equilibrium is a valid and perhaps more fundamental notion which the zeroth law for quantum thermodynamics at strong coupling should be based on. Only when the system-bath coupling becomes vanishingly weak that `temperature appearing in thermodynamic relations becomes universally defined and makes better physical sense.
The second law of classical thermodynamics, based on the positivity of the entropy production, only holds for deterministic processes. Therefore the Second Law in stochastic quantum thermodynamics may not hold. By making a fundamental connection between thermodynamics and information theory we will introduce a new way of defining the Second Law which holds for both deterministic classical and stochastic quantum thermodynamics. Our work incorporates information well into the Second Law and also provides a thermodynamic operational meaning for negative and positive entropy production.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا