Do you want to publish a course? Click here

Discrimination of gamma rays due to inelastic neutron scattering in AGATA

146   0   0.0 ( 0 )
 Added by Johan Nyberg
 Publication date 2009
  fields
and research's language is English




Ask ChatGPT about the research

Possibilities of discriminating neutrons and gamma rays in the AGATA gamma-ray tracking spectrometer have been investigated with the aim of reducing the background due to inelastic scattering of neutrons in the high-purity germanium crystals. This background may become a serious problem especially in experiments with neutron-rich radioactive ion beams. Simulations using the Geant4 toolkit and a tracking program based on the forward tracking algorithm were carried out by emitting neutrons and gamma rays from the center of AGATA. Three different methods were developed and tested in order to find fingerprints of the neutron interaction points in the detectors. In a simulation with simultaneous emission of six neutrons with energies in the range 1-5 MeV and ten gamma rays with energies between 150 and 1450 keV, the peak-to-background ratio at a gamma-ray energy of 1.0 MeV was improved by a factor of 2.4 after neutron rejection with a reduction of the photopeak efficiency at 1.0 MeV of only a factor of 1.25.



rate research

Read More

The response of AGATA segmented HPGe detectors to gamma rays in the energy range 2-15 MeV was measured. The 15.1 MeV gamma rays were produced using the reaction d(11B,ng)12C at Ebeam = 19.1 MeV, while gamma-rays between 2 to 9 MeV were produced using an Am-Be-Fe radioactive source. The energy resolution and linearity were studied and the energy-to-pulse-height conversion resulted to be linear within 0.05%. Experimental interaction multiplicity distributions are discussed and compared with the results of Geant4 simulations. It is shown that the application of gamma-ray tracking allows a suppression of background radiation following neutron capture by Ge nuclei. Finally the Doppler correction for the 15.1 MeV gamma line, performed using the position information extracted with Pulse-shape Analysis, is discussed.
Discrimination of the detection of fast neutrons and gamma rays in a liquid scintillator detector has been investigated using digital pulse-processing techniques. An experimental setup with a 252Cf source, a BC-501 liquid scintillator detector, and a BaF2 detector was used to collect waveforms with a 100 Ms/s, 14 bit sampling ADC. Three identical ADCs were combined to increase the sampling frequency to 300 Ms/s. Four different digital pulse-shape analysis algorithms were developed and compared to each other and to data obtained with an analogue neutron-gamma discrimination unit. Two of the digital algorithms were based on the charge comparison method, while the analogue unit and the other two digital algorithms were based on the zero-crossover method. Two different figure-of-merit parameters, which quantify the neutron-gamma discrimination properties, were evaluated for all four digital algorithms and for the analogue data set. All of the digital algorithms gave similar or better figure-of-merit values than what was obtained with the analogue setup. A detailed study of the discrimination properties as a function of sampling frequency and bit resolution of the ADC was performed. It was shown that a sampling ADC with a bit resolution of 12 bits and a sampling frequency of 100 Ms/s is adequate for achieving an optimal neutron-gamma discrimination for pulses having a dynamic range for deposited neutron energies of 0.3-12 MeV. An investigation of the influence of the sampling frequency on the time resolution was made. A FWHM of 1.7 ns was obtained at 100 Ms/s.
The next generation of radioactive ion beam facilities, which will give experimental access to many exotic nuclei, are presently being developed. At the same time the next generation of high resolution gamma-ray spectrometers, based on gamma-ray tracking, for studying the structure of these exotic nuclei are being developed. One of the main differences in tracking of $gamma$ rays versus charged particles is that the gamma rays do not deposit their energy continuously in the detector, but in a few discrete steps. Also, in the field of nuclear spectroscopy, the location of the source is mostly well known while the exact interaction position in the detector is the unknown quantity. This makes the challenges of gamma-ray tracking in germanium somewhat different compared to vertexing in silicon detectors. In these proceedings we present the methods for determining the 3D interaction positions in the detector and how these are used to reconstruct the gamma-ray tracks in the AGATA detector array. We also present preliminary simulation results of a proposed in-beam method to measure the interaction position resolution in the germanium detectors.
The inelastic scattering of neutrons by nanoparticles due to acoustic vibrational modes (energy below 10 meV) confined in nanoparticles is calculated using the Zemach-Glauber formalism. Such vibrational modes are commonly observed by light scattering techniques (Brillouin or low-frequency Raman scattering). We also report high resolution inelastic neutron scattering measurements for anatase TiO2 nanoparticles in a loose powder. Factors enabling the observation of such vibrations are discussed. These include a narrow nanoparticle size distribution which minimizes inhomogeneous broadening of the spectrum and the presence of hydrogen atoms oscillating with the nanoparticle surfaces which enhances the number of scattered neutrons.
148 - P.-A. Soderstrom 2008
The basic principles of detection of fast neutrons with liquid scintillator detectors are reviewed, together with a real example in the form of the Neutron Wall array. Two of the challenges in neutron detection, discrimination of neutrons and gamma rays and identification of cross talk between detectors due to neutron scattering, are briefly discussed, as well as possible solutions to these problems. The possibilities of using digital techniques for pulse-shape discrimination are examined. Results from a digital and anal
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا