Do you want to publish a course? Click here

Inelastic neutron scattering due to acoustic vibrations confined in nanoparticles: theory and experiment

150   0   0.0 ( 0 )
 Added by Lucien Saviot Dr
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

The inelastic scattering of neutrons by nanoparticles due to acoustic vibrational modes (energy below 10 meV) confined in nanoparticles is calculated using the Zemach-Glauber formalism. Such vibrational modes are commonly observed by light scattering techniques (Brillouin or low-frequency Raman scattering). We also report high resolution inelastic neutron scattering measurements for anatase TiO2 nanoparticles in a loose powder. Factors enabling the observation of such vibrations are discussed. These include a narrow nanoparticle size distribution which minimizes inhomogeneous broadening of the spectrum and the presence of hydrogen atoms oscillating with the nanoparticle surfaces which enhances the number of scattered neutrons.



rate research

Read More

Possibilities of discriminating neutrons and gamma rays in the AGATA gamma-ray tracking spectrometer have been investigated with the aim of reducing the background due to inelastic scattering of neutrons in the high-purity germanium crystals. This background may become a serious problem especially in experiments with neutron-rich radioactive ion beams. Simulations using the Geant4 toolkit and a tracking program based on the forward tracking algorithm were carried out by emitting neutrons and gamma rays from the center of AGATA. Three different methods were developed and tested in order to find fingerprints of the neutron interaction points in the detectors. In a simulation with simultaneous emission of six neutrons with energies in the range 1-5 MeV and ten gamma rays with energies between 150 and 1450 keV, the peak-to-background ratio at a gamma-ray energy of 1.0 MeV was improved by a factor of 2.4 after neutron rejection with a reduction of the photopeak efficiency at 1.0 MeV of only a factor of 1.25.
742 - Dallas R. Trinkle 2011
Hydrogen arranges at dislocations in palladium to form nanoscale hydrides, changing the vibrational spectra. An ab initio hydrogen potential energy model versus Pd neighbor distances allows us to predict the vibrational excitations for H from absolute zero up to room temperature adjacent to a partial dislocation and with strain. Using the equilibrium distribution of hydrogen with temperature, we predict excitation spectra to explain new incoherent inelastic neutron-scattering measurements. At 0K, dislocation cores trap H to form nanometer-sized hydrides, while increased temperature dissolves the hydrides and disperses H throughout bulk Pd.
Spin waves in the the rare earth orthorferrite YFeO$_3$ have been studied by inelastic neutron scattering and analyzed with a full four-sublattice model including contributions from both the weak ferromagnetic and hidden antiferromagnetic orders. Antiferromagnetic (AFM) exchange interactions of $J_1 = -4.23 pm 0.08$ (nearest-neighbors only) or $J_1 = -4.77 pm 0.08$ meV and $J_2 = -0.21 pm 0.04$ meV lead to excellent fits for most branches at both low and high energies. An additional branch associated with the hidden antiferromagnetic order was observed. This work paves the way for studies of other materials in this class containing spin reorientation transitions and magnetic rare earth ions.
Sodium niobate (NaNbO3) exhibits most complex sequence of structural phase transitions in perovskite family and therefore provides as excellent model system for understanding the mechanism of structural phase transitions. We report temperature dependence of inelastic neutron scattering measurements of phonon densities of states in sodium niobate. The measurements are carried out in various crystallographic phases of this material at various temperatures from 300 K to 1048 K. The phonon spectra exhibit peaks centered around 19, 37, 51, 70 and 105 meV. Interestingly, the peak around 70 meV shifts significantly towards lower energy with increasing temperature, while the other peaks do not exhibit an appreciable change. The phonon spectra at 783 K show prominent change and become more diffusive as compared to those at 303 K. In order to better analyze these features, we have performed first principles lattice dynamics calculations based on the density functional theory. The computed phonon density of states is found to be in good agreement with the experimental data. Based on our calculation we are able to assign the characteristic Raman modes in the antiferroelectric phase to the A1g symmetry, which are due to the folding of the T (w=95 cm-1) and delta(w=129 cm-1) points of the cubic Brillouin zone.
131 - L. Saviot , D. B. Murray 2004
Arbitrary waves incident on a solid embedded nanoparticle are studied. The acoustic vibrational frequencies are shown to correspond to the poles of the scattering cross section in the complex frequency plane. The location of the poles is unchanged even if the incident wave is nonplanar. A second approach approximating the infinite matrix as a very large shell surrounding the nanoparticle provides an alternate way of predicting the mode frequencies. The wave function of the vibration is also provided.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا