Do you want to publish a course? Click here

Response of AGATA Segmented HPGe Detectors to Gamma Rays up to 15.1 MeV

270   0   0.0 ( 0 )
 Added by Fabio Crespi Dr.
 Publication date 2012
  fields
and research's language is English




Ask ChatGPT about the research

The response of AGATA segmented HPGe detectors to gamma rays in the energy range 2-15 MeV was measured. The 15.1 MeV gamma rays were produced using the reaction d(11B,ng)12C at Ebeam = 19.1 MeV, while gamma-rays between 2 to 9 MeV were produced using an Am-Be-Fe radioactive source. The energy resolution and linearity were studied and the energy-to-pulse-height conversion resulted to be linear within 0.05%. Experimental interaction multiplicity distributions are discussed and compared with the results of Geant4 simulations. It is shown that the application of gamma-ray tracking allows a suppression of background radiation following neutron capture by Ge nuclei. Finally the Doppler correction for the 15.1 MeV gamma line, performed using the position information extracted with Pulse-shape Analysis, is discussed.



rate research

Read More

The next generation of radioactive ion beam facilities, which will give experimental access to many exotic nuclei, are presently being developed. At the same time the next generation of high resolution gamma-ray spectrometers, based on gamma-ray tracking, for studying the structure of these exotic nuclei are being developed. One of the main differences in tracking of $gamma$ rays versus charged particles is that the gamma rays do not deposit their energy continuously in the detector, but in a few discrete steps. Also, in the field of nuclear spectroscopy, the location of the source is mostly well known while the exact interaction position in the detector is the unknown quantity. This makes the challenges of gamma-ray tracking in germanium somewhat different compared to vertexing in silicon detectors. In these proceedings we present the methods for determining the 3D interaction positions in the detector and how these are used to reconstruct the gamma-ray tracks in the AGATA detector array. We also present preliminary simulation results of a proposed in-beam method to measure the interaction position resolution in the germanium detectors.
201 - I. Abt , A. Caldwell , J. Liu 2011
A fast method to determine the crystallographic axes of segmented true-coaxial high-purity germanium detectors is presented. It is based on the analysis of segment-occupancy patterns obtained by irradiation with radioactive sources. The measured patterns are compared to predictions for different axes orientations. The predictions require a simulation of the trajectories of the charge carriers taking the transverse anisotropy of their drift into account.
Possibilities of discriminating neutrons and gamma rays in the AGATA gamma-ray tracking spectrometer have been investigated with the aim of reducing the background due to inelastic scattering of neutrons in the high-purity germanium crystals. This background may become a serious problem especially in experiments with neutron-rich radioactive ion beams. Simulations using the Geant4 toolkit and a tracking program based on the forward tracking algorithm were carried out by emitting neutrons and gamma rays from the center of AGATA. Three different methods were developed and tested in order to find fingerprints of the neutron interaction points in the detectors. In a simulation with simultaneous emission of six neutrons with energies in the range 1-5 MeV and ten gamma rays with energies between 150 and 1450 keV, the peak-to-background ratio at a gamma-ray energy of 1.0 MeV was improved by a factor of 2.4 after neutron rejection with a reduction of the photopeak efficiency at 1.0 MeV of only a factor of 1.25.
Detection systems rely more and more on on-line or off-line comparison of detected signals with basis signals in order to determine the characteristics of the impinging particles. Unfortunately, these comparisons are very sensitive to the random time shifts that may alter the signal delivered by the detectors. We present two fast algebraic methods to determine the value of the time shift and to enhance the reliability of the comparison to the basis signals.
A new method is proposed for the problem of solving chi-square minimization with a positive solution. This method is embodied in an evolution of the popular NNLS algorithm. Its efficiency with respect to residue minimization is illustrated by the improvement it permits on the location of gamma-interactions inside an AGATA HPGe detector.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا