Do you want to publish a course? Click here

Barriers, trapping times and overlaps between local minima in the dynamics of the disordered Ising $p$-spin Model

168   0   0.0 ( 0 )
 Added by Daniel A. Stariolo
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the low temperature out of equilibrium Monte Carlo dynamics of the disordered Ising $p$-spin Model with $p=3$ and a small number of spin variables. We focus on sequences of configurations that are stable against single spin flips obtained by instantaneous gradient descent from persistent ones. We analyze the statistics of energy gaps, energy barriers and trapping times on sub-sequences such that the overlap between consecutive configurations does not overcome a threshold. We compare our results to the predictions of various trap models finding the best agreement with the step model when the $p$-spin configurations are constrained to be uncorrelated.



rate research

Read More

We study the dynamic and metastable properties of the fully connected Ising $p$-spin model with finite number of variables. We define trapping energies, trapping times and self correlation functions and we analyse their statistical properties in comparison to the predictions of trap models.
All higher-spin s >= 1/2 Ising spin glasses are studied by renormalization-group theory in spatial dimension d=3. The s-sequence of global phase diagrams, the chaos Lyapunov exponent, and the spin-glass runaway exponent are calculated. It is found that, in d=3, a finite-temperature spin-glass phase occurs for all spin values, including the continuum limit of s rightarrow infty. The phase diagrams, with increasing spin s, saturate to a limit value. The spin-glass phase, for all s, exhibits chaotic behavior under rescalings, with the calculated Lyapunov exponent of lambda = 1.93 and runaway exponent of y_R=0.24, showing simultaneous strong-chaos and strong-coupling behaviors. The ferromagnetic-spinglass-antiferromagnetic phase transitions occurring around p_t = 0.37 and 0.63 are unaffected by s, confirming the percolative nature of this phase transition.
We present results of numerical simulations on a one-dimensional Ising spin glass with long-range interactions. Parameters of the model are chosen such that it is a proxy for a short-range spin glass above the upper critical dimension (i.e. in the mean-field regime). The system is quenched to a temperature well below the transition temperature $T_c$ and the growth of correlations is observed. The spatial decay of the correlations at distances less than the dynamic correlation length $xi(t)$ agrees quantitatively with the predictions of a static theory, the metastate, evaluated according to the replica symmetry breaking (RSB) theory. We also compute the dynamic exponent $z(T)$ defined by $xi(t) propto t^{1/z(T)}$ and find that it is compatible with the mean-field value of the critical dynamical exponent for short range spin glasses.
We consider the complexity of random ferromagnetic landscapes on the hypercube ${pm 1}^N$ given by Ising models on the complete graph with i.i.d. non-negative edge-weights. This includes, in particular, the case of Bernoulli disorder corresponding to the Ising model on a dense random graph $mathcal G(N,p)$. Previous results had shown that, with high probability as $Ntoinfty$, the gradient search (energy-lowering) algorithm, initialized uniformly at random, converges to one of the homogeneous global minima (all-plus or all-minus). Here, we devise two modified algorithms tailored to explore the landscape at near-zero magnetizations (where the effect of the ferromagnetic drift is minimized). With these, we numerically verify the landscape complexity of random ferromagnets, finding a diverging number of (1-spin-flip-stable) local minima as $Ntoinfty$. We then investigate some of the properties of these local minima (e.g., typical energy and magnetization) and compare to the situation where the edge-weights are drawn from a heavy-tailed distribution.
Using the dedicated computer Janus, we follow the nonequilibrium dynamics of the Ising spin glass in three dimensions for eleven orders of magnitude. The use of integral estimators for the coherence and correlation lengths allows us to study dynamic heterogeneities and the presence of a replicon mode and to obtain safe bounds on the Edwards-Anderson order parameter below the critical temperature. We obtain good agreement with experimental determinations of the temperature-dependent decay exponents for the thermoremanent magnetization. This magnitude is observed to scale with the much harder to measure coherence length, a potentially useful result for experimentalists. The exponents for energy relaxation display a linear dependence on temperature and reasonable extrapolations to the critical point. We conclude examining the time growth of the coherence length, with a comparison of critical and activated dynamics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا