Do you want to publish a course? Click here

Field-dependent roughness of moving domain walls in a Pt/Co/Pt magnetic thin film

135   0   0.0 ( 0 )
 Added by Pamela C. Guruciaga
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The creep motion of domain walls driven by external fields in magnetic thin films is described by universal features related to the underlying depinning transition. One key parameter in this description is the roughness exponent characterizing the growth of fluctuations of the domain wall position with its longitudinal length scale. The roughness amplitude, which gives information about the scale of fluctuations, however, has received less attention. Albeit their relevance, experimental reports of the roughness parameters, both exponent and amplitude, are scarce. We report here experimental values of the roughness parameters for different magnetic field intensities in the creep regime at room temperature for a Pt/Co/Pt thin film. The mean value of the roughness exponent is $zeta = 0.74$, and we show that it can be rationalized as an effective value in terms of the known universal values corresponding to the depinning and thermal cases. In addition, it is shown that the roughness amplitude presents a significant increase with decreasing field. These results contribute to the description of domain wall motion in disordered thin magnetic systems.



rate research

Read More

Magnetic field-driven domain wall motion in an ultrathin Pt/Co(0.45nm)/Pt ferromagnetic film with perpendicular anisotropy is studied over a wide temperature range. Three different pinning dependent dynamical regimes are clearly identified: the creep, the thermally assisted flux flow and the depinning, as well as their corresponding crossovers. The wall elastic energy and microscopic parameters characterizing the pinning are determined. Both the extracted thermal rounding exponent at the depinning transition, $psi=$0.15, and the Larkin length crossover exponent, $phi=$0.24, fit well with the numerical predictions.
Domain-wall dynamics and spatial fluctuations are closely related to each other and to universal features of disordered systems. Experimentally measured roughness exponents characterizing spatial fluctuations have been reported for magnetic thin films, with values generally different from those predicted by the equilibrium, depinning and thermal reference states. Here, we study the roughness of domain walls in GdFeCo thin films over a large range of magnetic field and temperature. Our analysis is performed in the framework of a model considering length-scale crossovers between the reference states, which is shown to bridge the differences between experimental results and theoretical predictions. We also quantify for the first time the size of the depinning avalanches below the depinning field at finite temperatures.
Chiral domain walls in ultrathin perpendicularly magnetised layers have a N{e}el structure stabilised by a Dzyaloshinskii-Moriya interaction (DMI) that is generated at the interface between the ferromagnet and a heavy metal. Different heavy metals are required above and below a ferromagnetic film in order to generate the structural inversion asymmetry needed to ensure that the DMI arising at the two interfaces does not cancel. Here we report on the magnetic properties of epitaxial Pt/Co/Au$_x$Pt$_{1-x}$ trilayers grown by sputtering onto sapphire substrates with 0.6 nm thick Co. As $x$ rises from 0 to 1 a structural inversion asymmetry is generated. We characterise the epilayer structure with x-ray diffraction and cross-sectional transmission electron microscopy, revealing (111) stacking. The saturation magnetization falls as the proximity magnetisation in Pt is reduced, whilst the perpendicular magnetic anisotropy $K_mathrm{u}$ rises. The micromagnetic DMI strength $D$ was determined using the bubble expansion technique and also rises from a negligible value when $x=0$ to $sim 1$ mJ/m$^2$ for $x = 1$. The depinning field at which field-driven domain wall motion crosses from the creep to the depinning regime rises from $sim 40$ to $sim 70$ mT, attributed to greater spatial fluctuations of the domain wall energy with increasing Au concentration. Meanwhile, the increase in DMI causes the Walker field to rise from $sim 10$ to $sim 280$ mT, meaning that only in the $x = 1$ sample is the steady flow regime accessible. The full dependence of domain wall velocity on driving field bears little resemblance to the prediction of a simple one-dimensional model, but can be described very well using micromagnetic simulations with a realistic model of disorder. These reveal a rise in Gilbert damping as $x$ increases.
We studied the depth dependent magnetization profile of the magnetostrictive Co thin film layer in a PMN-PT (011)/Ta/Co/Ta structure under both zero and nonzero applied electric field using polarized neutron reflectometry. Application of electric field across the PMN-PT substrate generates a strain, which rotates the magnetization of the Co layer consistent with the Villari effect. At low magnetic fields (near remanence and coercive field conditions), we find that the depth dependent magnetization profile is non-uniform, under both zero and nonzero applied electric fields. These variations are attributable to the depth dependent strain profile in the Co film, as determined by finite element analysis simulations.
All-optical helicity dependent switching (AO-HDS), deterministic control of magnetization by circularly polarized laser pulses, allows to efficiently manipulate spins without the need of a magnetic field. However, AO-HDS in ferromagnetic metals so far requires many laser pulses for fully switching their magnetic states. Using a combination of a short, 90-fs linearly polarized pulse and a subsequent longer, 3-ps circularly polarized pulse, we demonstrate that the number of pulses for full magnetization reversal can be reduced to 4 pulse pairs in a single stack of Pt/Co/Pt. The obtained results suggest that the dual-pulse approach is a potential route towards realizing efficient AO-HDS in ferromagnetic metals.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا