We study Andreev reflection in a normal conductor-molecule-superconductor junction using a first principles approach. In particular, we focus on a family of molecules consisting of a molecular backbone and a weakly coupled side group. We show that the presence of the side group can lead to a Fano resonance in the Andreev reflection. We use a simple theoretical model to explain the results of the numerical calculations and to make predictions about the possible sub-gap resonance structures in the Andreev reflection coefficient.
Andreev reflection in graphene is special since it can be of two types- retro or specular. Specular Andreev reflection (SAR) dominates when the position of the Fermi energy in graphene is comparable to or smaller than the superconducting gap. Bilayer graphene (BLG) is an ideal candidate to observe the crossover from retro to specular since the Fermi energy broadening near the Dirac point is much weaker compared to monolayer graphene. Recently, the observation of signatures of SAR in BLG have been reported experimentally by looking at the enhancement of conductance at finite bias near the Dirac point. However, the signatures were not very pronounced possibly due to the participation of normal quasi-particles at bias energies close to the superconducting gap. Here, we propose a scheme to observe the features of enhanced SAR even at zero bias at a normal metal (NM)-superconductor (SC) junction on BLG. Our scheme involves applying a Zeeman field to the NM side of the NM-SC junction on BLG (making the NM ferromagnetic), which energetically separates the Dirac points for up-spin and down-spin. We calculate the conductance as a function of chemical potential and bias within the superconducting gap and show that well-defined regions of specular- and retro-type Andreev reflection exist. We compare the results with and without superconductivity. We also investigate the possibility of the formation of a p-n junction at the interface between the NM and SC due to a work function mismatch.
We study superconducting quantum interference in InSb flake Josephson junctions. An even-odd effect in the amplitude and periodicity of the superconducting quantum interference pattern is found. Interestingly, the occurrence of this pattern coincides with enhanced conduction at both edges of the flake, as is deduced from measuring a SQUID pattern at reduced gate voltages. We identify the specific crystal facet of the edge with enhanced conduction, and confirm this by measuring multiple devices. Furthermore, we argue the even-odd effect is due to crossed Andreev reflection, a process where a Cooper pair splits up over the two edges and recombines at the opposite contact. An entirely $h/e$ periodic SQUID pattern, as well as the observation of both even-odd and odd-even effects, corroborates this conclusion. Crossed Andreev reflection could be harnessed for creating a topological state of matter or performing experiments on the non-local spin-entanglement of spatially separated Cooper pairs.
We show experimentally that in nanometer scaled superconductor/normal metal hybrid devices and in a small window of contact resistances, crossed Andreev reflection (CAR) can dominate the nonlocal transport for all energies below the superconducting gap. Besides CAR, elastic cotunneling (EC) and nonlocal charge imbalance (CI) can be identified as competing subgap transport mechanisms in temperature dependent four-terminal nonlocal measurements. We demonstrate a systematic change of the nonlocal resistance vs. bias characteristics with increasing contact resistances, which can be varied in the fabrication process. For samples with higher contact resistances, CAR is weakened relative to EC in the midgap regime, possibly due to dynamical Coulomb blockade. Gaining control of CAR is an important step towards the realization of a solid state entangler.
We report the study of ballistic transport in normal metal/graphene/superconductor junctions in edge-contact geometry. While in the normal state, we have observed Fabry-P{e}rot resonances suggesting that charge carriers travel ballistically, the superconducting state shows that the Andreev reflection at the graphene/superconductor interface is affected by these interferences. Our experimental results in the superconducting state have been analyzed and explained with a modified Octavio-Tinkham-Blonder-Klapwijk model taking into account the magnetic pair-breaking effects and the two different interface transparencies, textit{i.e.},between the normal metal and graphene, and between graphene and the superconductor. We show that the transparency of the normal metal/graphene interface strongly varies with doping at large scale, while it undergoes weaker changes at the graphene/superconductor interface. When a cavity is formed by the charge transfer occurring in the vicinity of the contacts, we see that the transmission probabilities follow the normal state conductance highlighting the interplay between the Andreev processes and the electronic interferometer.
Topological insulators (TIs) have attracted immense interest because they host helical surface states. Protected by time-reversal symmetry, they are robust to non-magnetic disorder. When superconductivity is induced in these helical states, they are predicted to emulate p-wave pairing symmetry, with Majorana states bound to vortices. Majorana bound states possess non-Abelian exchange statistics which can be probed through interferometry. Here, we take a significant step towards Majorana interferometry by observing pronounced Fabry-Perot oscillations in a TI sandwiched between a superconducting and normal lead. For energies below the superconducting gap, we observe a doubling in the frequency of the oscillations, arising from the additional phase accumulated from Andreev reflection. When a magnetic field is applied perpendicular to the TI surface, a number of very sharp and gate-tunable conductance peaks appear at or near zero energy, which has consequences for interpreting spectroscopic probes of Majorana fermions. Our results demonstrate that TIs are a promising platform for exploring phase-coherent transport in a solid-state system.