Do you want to publish a course? Click here

Ground-plane screening of Coulomb interactions in two-dimensional systems: How effectively can one two-dimensional system screen interactions in another?

158   0   0.0 ( 0 )
 Added by Lap-hang Ho
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

The use of a nearby metallic ground-plane to limit the range of the Coulomb interactions between carriers is a useful approach in studying the physics of two-dimensional (2D) systems. This approach has been used to study Wigner crystallization of electrons on the surface of liquid helium, and most recently, the insulating and metallic states of semiconductor-based two-dimensional systems. In this paper, we perform calculations of the screening effect of one 2D system on another and show that a 2D system is at least as effective as a metal in screening Coulomb interactions. We also show that the recent observation of the reduced effect of the ground-plane when the 2D system is in the metallic regime is due to intralayer screening.



rate research

Read More

We have developed a technique utilizing a double quantum well heterostructure that allows us to study the effect of a nearby ground-plane on the metallic behavior in a GaAs two-dimensional hole system (2DHS) in a single sample and measurement cool-down, thereby maintaining a constant disorder potential. In contrast to recent measurements of the effect of ground-plane screening of the long-range Coulomb interaction in the insulating regime, we find surprisingly little effect on the metallic behavior when we change the distance between the 2DHS and the nearby ground-plane.
Magnetism in recently discovered van der Waals materials has opened new avenues in the study of fundamental spin interactions in truly two-dimensions. A paramount question is what effect higher-order interactions beyond bilinear Heisenberg exchange have on the magnetic properties of few-atom thick compounds. Here we demonstrate that biquadratic exchange interactions, which is the simplest and most natural form of non-Heisenberg coupling, assume a key role in the magnetic properties of layered magnets. Using a combination of nonperturbative analytical techniques, non-collinear first-principles methods and classical Monte Carlo calculations that incorporate higher-order exchange, we show that several quantities including magnetic anisotropies, spin-wave gaps and topological spin-excitations are intrinsically renormalized leading to further thermal stability of the layers. We develop a spin Hamiltonian that also contains antisymmetric exchanges (e.g. Dzyaloshinskii-Moriya interactions) to successfully rationalize numerous observations currently under debate, such as the non-Ising character of several compounds despite a strong magnetic anisotropy, peculiarities of the magnon spectrum of 2D magnets, and the discrepancy between measured and calculated Curie temperatures. Our results lay the foundation of a universal higher-order exchange theory for novel 2D magnetic design strategies.
We study the density-density response function of a collection of charged massive Dirac particles and present analytical expressions for the dynamical polarization function in one, two and three dimensions. The polarization function is then used to find the dispersion of the plasmon modes, and electrostatic screening of Coulomb interactions within the random phase approximation. We find that for massive Dirac systems, the oscillating screened potential decays as $r^{-1}$, $r^{-2}$ and $r^{-3}$ in one, two, and three dimensions respectively. However for massless Dirac systems there is no electrostatic screening or Friedel oscillation in one dimension, and the oscillating screened potential decays as $r^{-3}$ and $r^{-4}$, in two and three dimensions respectively. Our analytical results for the polarization function will be useful for exploring the physics of massive and massless Dirac materials in different experimental systems with varying dimensionality.
We present experimental results of transverse electron focusing measurements performed on an n-type GaAs based mesoscopic device consisting of one-dimensional (1D) quantum wires as injector and detector. We show that non-adiabatic injection of 1D electrons at a conductance of e$^2$/h results in a single first focusing peak, which on gradually increasing the injector conductance up to 2e$^2$/h , produces asymmetric two sub-peaks in the first focusing peak, each sub-peak representing the population of spin-state arising from the spatially separated spins in the injector. Further increasing the conductance flips the spin-states in the 1D channel thus reversing the asymmetry in the sub-peaks. On applying a source-drain bias, the spin-gap, so obtained, can be resolved thus providing evidence of exchange interaction induced spin polarisation in the 1D systems.
271 - T. Kernreiter 2013
We have calculated the exchange-energy contribution to the total energy of quasi-two-dimensional hole systems realized by a hard-wall quantum-well confinement of valence-band states in typical semiconductors. The magnitude of the exchange energy turns out to be suppressed from the value expected for analogous conduction-band systems whenever the mixing between heavy-hole and light-hole components is strong. Our results are obtained using a very general formalism for calculating the exchange energy of many-particle systems where single-particle states are spinors. We have applied this formalism to obtain analytical results for spin-3/2 hole systems in limiting cases.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا