Do you want to publish a course? Click here

Contracting preference relations for database applications

109   0   0.0 ( 0 )
 Added by Denis Mindolin
 Publication date 2009
and research's language is English




Ask ChatGPT about the research

The binary relation framework has been shown to be applicable to many real-life preference handling scenarios. Here we study preference contraction: the problem of discarding selected preferences. We argue that the property of minimality and the preservation of strict partial orders are crucial for contractions. Contractions can be further constrained by specifying which preferences should be protected. We consider two classes of preference relations: finite and finitely representable. We present algorithms for computing minimal and preference-protecting minimal contractions for finite as well as finitely representable preference relations. We study relationships between preference change in the binary relation framework and belief change in the belief revision theory. We also introduce some preference query optimization techniques which can be used in the presence of contraction. We evaluate the proposed algorithms experimentally and present the results.



rate research

Read More

We suggest that the analysis of incomplete contracting developed by law and economics researchers can provide a useful framework for understanding the AI alignment problem and help to generate a systematic approach to finding solutions. We first provide an overview of the incomplete contracting literature and explore parallels between this work and the problem of AI alignment. As we emphasize, misalignment between principal and agent is a core focus of economic analysis. We highlight some technical results from the economics literature on incomplete contracts that may provide insights for AI alignment researchers. Our core contribution, however, is to bring to bear an insight that economists have been urged to absorb from legal scholars and other behavioral scientists: the fact that human contracting is supported by substantial amounts of external structure, such as generally available institutions (culture, law) that can supply implied terms to fill the gaps in incomplete contracts. We propose a research agenda for AI alignment work that focuses on the problem of how to build AI that can replicate the human cognitive processes that connect individual incomplete contracts with this supporting external structure.
One of the distinctive features of Information Retrieval systems comparing to Database Management systems, is that they offer better compression for posting lists, resulting in better I/O performance and thus faster query evaluation. In this paper, we introduce database representations of the index that reduce the size (and thus the disk I/Os) of the posting lists. This is not achieved by redesigning the DBMS, but by exploiting the non 1NF features that existing Object-Relational DBM systems (ORDBMS) already offer. Specifically, four different database representations are described and detailed experimental results for one million pages are reported. Three of these representations are one order of magnitude more space efficient and faster (in query evaluation) than the plain relational representation.
108 - A. Vaniachine 2009
ATLAS event data processing requires access to non-event data (detector conditions, calibrations, etc.) stored in relational databases. The database-resident data are crucial for the event data reconstruction processing steps and often required for user analysis. A main focus of ATLAS database operations is on the worldwide distribution of the Conditions DB data, which are necessary for every ATLAS data processing job. Since Conditions DB access is critical for operations with real data, we have developed the system where a different technology can be used as a redundant backup. Redundant database operations infrastructure fully satisfies the requirements of ATLAS reprocessing, which has been proven on a scale of one billion database queries during two reprocessing campaigns of 0.5 PB of single-beam and cosmics data on the Grid. To collect experience and provide input for a best choice of technologies, several promising options for efficient database access in user analysis were evaluated successfully. We present ATLAS experience with scalable database access technologies and describe our approach for prevention of database access bottlenecks in a Grid computing environment.
In this work, we present the development of a new database, namely Sound Localization and Classification (SLoClas) corpus, for studying and analyzing sound localization and classification. The corpus contains a total of 23.27 hours of data recorded using a 4-channel microphone array. 10 classes of sounds are played over a loudspeaker at 1.5 meters distance from the array by varying the Direction-of-Arrival (DoA) from 1 degree to 360 degree at an interval of 5 degree. To facilitate the study of noise robustness, 6 types of outdoor noise are recorded at 4 DoAs, using the same devices. Moreover, we propose a baseline method, namely Sound Localization and Classification Network (SLCnet) and present the experimental results and analysis conducted on the collected SLoClas database. We achieve the accuracy of 95.21% and 80.01% for sound localization and classification, respectively. We publicly release this database and the source code for research purpose.
Performance and lifetime testing of batteries requires considerable effort and expensive specialist equipment. A wide range of potentiostats and battery testers are available on the market, but there is no standardisation of data exchange and data storage between them. To address this, we present Galvanalyser, a battery test database developed to manage the growing challenges of collating, managing and accessing data produced by multiple different battery testers. Collation is managed by a client-side application, the `Harvester, which pushes new data up to a PostgreSQL database on a server. Data access is possible in two ways: firstly, a web application allows data to be searched and viewed in a browser, with the option to plot data; secondly, a Python application programming interface (API) can connect directly to the database and pull requested data sets into Python. We hope to make Galvanalyser openly available soon. If you wish to test the system, please contact us for early access.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا