No Arabic abstract
In this work, we present the development of a new database, namely Sound Localization and Classification (SLoClas) corpus, for studying and analyzing sound localization and classification. The corpus contains a total of 23.27 hours of data recorded using a 4-channel microphone array. 10 classes of sounds are played over a loudspeaker at 1.5 meters distance from the array by varying the Direction-of-Arrival (DoA) from 1 degree to 360 degree at an interval of 5 degree. To facilitate the study of noise robustness, 6 types of outdoor noise are recorded at 4 DoAs, using the same devices. Moreover, we propose a baseline method, namely Sound Localization and Classification Network (SLCnet) and present the experimental results and analysis conducted on the collected SLoClas database. We achieve the accuracy of 95.21% and 80.01% for sound localization and classification, respectively. We publicly release this database and the source code for research purpose.
Sound event localization aims at estimating the positions of sound sources in the environment with respect to an acoustic receiver (e.g. a microphone array). Recent advances in this domain most prominently focused on utilizing deep recurrent neural networks. Inspired by the success of transformer architectures as a suitable alternative to classical recurrent neural networks, this paper introduces a novel transformer-based sound event localization framework, where temporal dependencies in the received multi-channel audio signals are captured via self-attention mechanisms. Additionally, the estimated sound event positions are represented as multivariate Gaussian variables, yielding an additional notion of uncertainty, which many previously proposed deep learning-based systems designed for this application do not provide. The framework is evaluated on three publicly available multi-source sound event localization datasets and compared against state-of-the-art methods in terms of localization error and event detection accuracy. It outperforms all competing systems on all datasets with statistical significant differences in performance.
An anomalous sound detection system to detect unknown anomalous sounds usually needs to be built using only normal sound data. Moreover, it is desirable to improve the system by effectively using a small amount of anomalous sound data, which will be accumulated through the systems operation. As one of the methods to meet these requirements, we focus on a binary classification model that is developed by using not only normal data but also outlier data in the other domains as pseudo-anomalous sound data, which can be easily updated by using anomalous data. In this paper, we implement a new loss function based on metric learning to learn the distance relationship from each class centroid in feature space for the binary classification model. The proposed multi-task learning of the binary classification and the metric learning makes it possible to build the feature space where the within-class variance is minimized and the between-class variance is maximized while keeping normal and anomalous classes linearly separable. We also investigate the effectiveness of additionally using anomalous sound data for further improving the binary classification model. Our results showed that multi-task learning using binary classification and metric learning to consider the distance from each class centroid in the feature space is effective, and performance can be significantly improved by using even a small amount of anomalous data during training.
This article is a survey on deep learning methods for single and multiple sound source localization. We are particularly interested in sound source localization in indoor/domestic environment, where reverberation and diffuse noise are present. We provide an exhaustive topography of the neural-based localization literature in this context, organized according to several aspects: the neural network architecture, the type of input features, the output strategy (classification or regression), the types of data used for model training and evaluation, and the model training strategy. This way, an interested reader can easily comprehend the vast panorama of the deep learning-based sound source localization methods. Tables summarizing the literature survey are provided at the end of the paper for a quick search of methods with a given set of target characteristics.
Cardiac auscultation is an essential point-of-care method used for the early diagnosis of heart diseases. Automatic analysis of heart sounds for abnormality detection is faced with the challenges of additive noise and sensor-dependent degradation. This paper aims to develop methods to address the cardiac abnormality detection problem when both types of distortions are present in the cardiac auscultation sound. We first mathematically analyze the effect of additive and convolutional noise on short-term filterbank-based features and a Convolutional Neural Network (CNN) layer. Based on the analysis, we propose a combination of linear and logarithmic spectrogram-image features. These 2D features are provided as input to a residual CNN network (ResNet) for heart sound abnormality detection. Experimental validation is performed on an open-access heart sound abnormality detection dataset involving noisy recordings obtained from multiple stethoscope sensors. The proposed method achieves significantly improved results compared to the conventional approaches, with an area under the ROC (receiver operating characteristics) curve (AUC) of 91.36%, F-1 score of 84.09%, and Macc (mean of sensitivity and specificity) of 85.08%. We also show that the proposed method shows the best mean accuracy across different source domains including stethoscope and noise variability, demonstrating its effectiveness in different recording conditions. The proposed combination of linear and logarithmic features along with the ResNet classifier effectively minimizes the impact of background noise and sensor variability for classifying phonocardiogram (PCG) signals. The proposed method paves the way towards developing computer-aided cardiac auscultation systems in noisy environments using low-cost stethoscopes.
Environmental Sound Classification (ESC) is a challenging field of research in non-speech audio processing. Most of current research in ESC focuses on designing deep models with special architectures tailored for specific audio datasets, which usually cannot exploit the intrinsic patterns in the data. However recent studies have surprisingly shown that transfer learning from models trained on ImageNet is a very effective technique in ESC. Herein, we propose SoundCLR, a supervised contrastive learning method for effective environment sound classification with state-of-the-art performance, which works by learning representations that disentangle the samples of each class from those of other classes. Our deep network models are trained by combining a contrastive loss that contributes to a better probability output by the classification layer with a cross-entropy loss on the output of the classifier layer to map the samples to their respective 1-hot encoded labels. Due to the comparatively small sizes of the available environmental sound datasets, we propose and exploit a transfer learning and strong data augmentation pipeline and apply the augmentations on both the sound signals and their log-mel spectrograms before inputting them to the model. Our experiments show that our masking based augmentation technique on the log-mel spectrograms can significantly improve the recognition performance. Our extensive benchmark experiments show that our hybrid deep network models trained with combined contrastive and cross-entropy loss achieved the state-of-the-art performance on three benchmark datasets ESC-10, ESC-50, and US8K with validation accuracies of 99.75%, 93.4%, and 86.49% respectively. The ensemble version of our models also outperforms other top ensemble methods. The code is available at https://github.com/alireza-nasiri/SoundCLR.