Do you want to publish a course? Click here

Spectral densities of Wishart-Levy free stable random matrices: Analytical results and Monte Carlo validation

196   0   0.0 ( 0 )
 Added by Guido Germano
 Publication date 2009
  fields Physics Financial
and research's language is English




Ask ChatGPT about the research

Random matrix theory is used to assess the significance of weak correlations and is well established for Gaussian statistics. However, many complex systems, with stock markets as a prominent example, exhibit statistics with power-law tails, that can be modelled with Levy stable distributions. We review comprehensively the derivation of an analytical expression for the spectra of covariance matrices approximated by free Levy stable random variables and validate it by Monte Carlo simulation.



rate research

Read More

284 - K. Gorska , K. A. Penson 2011
We study the one-dimensional Levy stable density distributions g(alpha, beta; x) for -infty < x < infty, for rational values of index alpha and the asymmetry parameter beta: alpha = l/k and beta = (l - 2r)/k, where l, k and r are positive integers such that 0 < l/k < 1 for 0 <= r <= l and 1 < l/k <= 2 for l-k <= r <= k. We treat both symmetric (beta = 0) and asymmetric (beta neq 0) cases. We furnish exact and explicit forms of g(alpha, beta; x) in terms of known functions for any admissible values of alpha and beta specified by a triple of integers k, l and r. We reproduce all the previously known exact results and we study analytically and graphically many new examples. We point out instances of experimental and statistical data that could be described by our solutions.
We investigate the level density for several ensembles of positive random matrices of a Wishart--like structure, $W=XX^{dagger}$, where $X$ stands for a nonhermitian random matrix. In particular, making use of the Cauchy transform, we study free multiplicative powers of the Marchenko-Pastur (MP) distribution, ${rm MP}^{boxtimes s}$, which for an integer $s$ yield Fuss-Catalan distributions corresponding to a product of $s$ independent square random matrices, $X=X_1cdots X_s$. New formulae for the level densities are derived for $s=3$ and $s=1/3$. Moreover, the level density corresponding to the generalized Bures distribution, given by the free convolution of arcsine and MP distributions is obtained. We also explain the reason of such a curious convolution. The technique proposed here allows for the derivation of the level densities for several other cases.
The confinement of critical fluctuations in soft media induces critical Casimir forces acting on the confining surfaces. The temperature and geometry dependences of such forces are characterized by universal scaling functions. A novel approach is presented to determine them for films via Monte Carlo simulations of lattice models. The method is based on an integration scheme of free energy differences. Our results for the Ising and the XY universality class compare favourably with corresponding experimental results for wetting layers of classical binary liquid mixtures and of 4He, respectively.
The swap Monte Carlo algorithm allows the preparation of highly stable glassy configurations for a number of glass-formers, but is inefficient for some models, such as the much studied binary Kob-Andersen (KA) mixture. We have recently developed generalisations to the KA model where swap can be very effective. Here, we show that these models can in turn be used to considerably enhance the stability of glassy configurations in the original KA model at no computational cost. We successfully develop several numerical strategies both in and out of equilibrium to achieve this goal and show how to optimise them. We provide several physical measurements indicating that the proposed algorithms considerably enhance mechanical and thermodynamic stability in the KA model, including a transition towards brittle yielding behaviour. Our results thus pave the way for future studies of stable glasses using the KA model.
The continuous-time random walk (CTRW) is a pure-jump stochastic process with several applications in physics, but also in insurance, finance and economics. A definition is given for a class of stochastic integrals driven by a CTRW, that includes the Ito and Stratonovich cases. An uncoupled CTRW with zero-mean jumps is a martingale. It is proved that, as a consequence of the martingale transform theorem, if the CTRW is a martingale, the Ito integral is a martingale too. It is shown how the definition of the stochastic integrals can be used to easily compute them by Monte Carlo simulation. The relations between a CTRW, its quadratic variation, its Stratonovich integral and its Ito integral are highlighted by numerical calculations when the jumps in space of the CTRW have a symmetric Levy alpha-stable distribution and its waiting times have a one-parameter Mittag-Leffler distribution. Remarkably these distributions have fat tails and an unbounded quadratic variation. In the diffusive limit of vanishing scale parameters, the probability density of this kind of CTRW satisfies the space-time fractional diffusion equation (FDE) or more in general the fractional Fokker-Planck equation, that generalize the standard diffusion equation solved by the probability density of the Wiener process, and thus provides a phenomenologic model of anomalous diffusion. We also provide an analytic expression for the quadratic variation of the stochastic process described by the FDE, and check it by Monte Carlo.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا