Do you want to publish a course? Click here

Monte Carlo simulation results for critical Casimir forces

301   0   0.0 ( 0 )
 Added by Andrea Gambassi
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

The confinement of critical fluctuations in soft media induces critical Casimir forces acting on the confining surfaces. The temperature and geometry dependences of such forces are characterized by universal scaling functions. A novel approach is presented to determine them for films via Monte Carlo simulations of lattice models. The method is based on an integration scheme of free energy differences. Our results for the Ising and the XY universality class compare favourably with corresponding experimental results for wetting layers of classical binary liquid mixtures and of 4He, respectively.



rate research

Read More

We present a new Monte Carlo method to calculate Casimir forces acting on objects in a near-critical fluid, considering the two basic cases of a wall and a sphere embedded in a two-dimensional Ising medium. During the simulation, the objects are moved through the system with appropriate statistical weights, and consequently are attracted or repelled from the system boundaries depending on the boundary conditions. The distribution function of the object position is utilized to obtain the residual free energy, or Casimir potential, of the configuration as well as the corresponding Casimir force. The results are in perfect agreement with known exact results. The method can easily be generalized to more complicated geometries, to higher dimensions, and also to colloidal suspensions with many particles.
Effective Casimir forces induced by thermal fluctuations in the vicinity of bulk critical points are studied by means of Monte Carlo simulations in three-dimensional systems for film geometries and within the experimentally relevant Ising and XY universality classes. Several surface universality classes of the confining surfaces are considered, some of which are relevant for recent experiments. A novel approach introduced previously EPL 80, 60009 (2007), based inter alia on an integration scheme of free energy differences, is utilized to compute the universal scaling functions of the critical Casimir forces in the critical range of temperatures above and below the bulk critical temperature. The resulting predictions are compared with corresponding experimental data for wetting films of fluids and with available theoretical results.
We present general arguments and construct a stress tensor operator for finite lattice spin models. The average value of this operator gives the Casimir force of the system close to the bulk critical temperature $T_c$. We verify our arguments via exact results for the force in the two-dimensional Ising model, $d$-dimensional Gaussian and mean spherical model with $2<d<4$. On the basis of these exact results and by Monte Carlo simulations for three-dimensional Ising, XY and Heisenberg models we demonstrate that the standard deviation of the Casimir force $F_C$ in a slab geometry confining a critical substance in-between is $k_b T D(T)(A/a^{d-1})^{1/2}$, where $A$ is the surface area of the plates, $a$ is the lattice spacing and $D(T)$ is a slowly varying nonuniversal function of the temperature $T$. The numerical calculations demonstrate that at the critical temperature $T_c$ the force possesses a Gaussian distribution centered at the mean value of the force $<F_C>=k_b T_c (d-1)Delta/(L/a)^{d}$, where $L$ is the distance between the plates and $Delta$ is the (universal) Casimir amplitude.
Using general scaling arguments combined with mean-field theory we investigate the critical ($T simeq T_c$) and off-critical ($T e T_c$) behavior of the Casimir forces in fluid films of thickness $L$ governed by dispersion forces and exposed to long-ranged substrate potentials which are taken to be equal on both sides of the film. We study the resulting effective force acting on the confining substrates as a function of $T$ and of the chemical potential $mu$. We find that the total force is attractive both below and above $T_c$. If, however, the direct substrate-substrate contribution is subtracted, the force is repulsive everywhere except near the bulk critical point $(T_c,mu_c)$, where critical density fluctuations arise, or except at low temperatures and $(L/a) (betaDelta mu) =O(1)$, with $Delta mu=mu-mu_c <0$ and $a$ the characteristic distance between the molecules of the fluid, i.e., in the capillary condensation regime. While near the critical point the maximal amplitude of the attractive force if of order of $L^{-d}$ in the capillary condensation regime the force is much stronger with maximal amplitude decaying as $L^{-1}$. Essential deviations from the standard finite-size scaling behavior are observed within the finite-size critical region $L/xi=O(1)$ for films with thicknesses $L lesssim L_{rm crit}$, where $L_{rm crit}=xi_0^pm (16 |s|)^{ u/beta}$, with $ u$ and $beta$ as the standard bulk critical exponents and with $s=O(1)$ as the dimensionless parameter that characterizes the relative strength of the long-ranged tail of the substrate-fluid over the fluid-fluid interaction. We present the modified finite-size scaling pertinent for such a case and analyze in detail the finite-size behavior in this region.
244 - O. Vasilyev , A. Maciolek , 2011
Monte Carlo simulations based on an integration scheme for free energy differences is used to compute critical Casimir forces for three-dimensional Ising films with various boundary fields. We study the scaling behavior of the critical Casimir force, including the scaling variable related to the boundary fields. Finite size corrections to scaling are taken into account. We pay special attention to that range of surface field strengths within which the force changes from repulsive to attractive upon increasing the temperature. Our data are compared with other results available in the literature.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا